[301] Bits and Memory

Tyler Caraza-Harter

Ones and Zeros

Computers “speak” ones and zeros (called bits)

Ones and Zeros

Computers “speak” ones and zeros (called bits)

what about...

Ones and Zeros

Computers “speak” ones and zeros (called bits)

what about...

text

Ones and Zeros

Computers “speak” ones and zeros (called bits)

what about...

3.14159,
numbers

Ones and Zeros

Computers “speak” ones and zeros (called bits)

what about...

Images
3.14159,
numbers

Ones and Zeros

Computers “speak” ones and zeros (called bits)

what about...

Images
3.14159,
numbers

video

Ones and Zeros

Computers “speak” ones and zeros (called bits)

what about...

he\\os \Nor\d

text

Images

numbers

video

Ones and Zeros

Intuitively, people used to believe all of
these different types of information were
fundamentally different

Information Theory

Claud Shannon invented information theory in
1948, with bits as basic unit of information.

Before Shannon, there was precious little sense
of information as an idea, a measurable
quantity, an object fitted out for hard science.

Before Shannon, information was a telegram, a
photograph, a paragraph, a song.

After Shannon, information was entirely
abstracted into bits.

The sender no longer mattered, the intent no
longer mattered, the medium no longer
mattered, not even the meaning mattered: a
phone conversation, a snatch of Morse
telegraph, a page from a detective story, were
all brought under a common code.

~ A Mind at Play, by Jimmy Soni and Rob Goodman

Learning Objectives

What is a bit? A byte? How to quantify them?

How can we use simple bits to represent everything?

How are bits stored in memory?

How can we store instructions in memory?

Today's Topics

Binary
e Bits, bytes
e Quantifying bytes

Memory Organization

Data representation

What is a bit?

A bit isjustaOora1

Why the name “bit”?

In the decimal number system, with have ten “digits”
e 0,1,2,3,5,6,7,8,9

Why the name “bit”?

In the decimal number system, with have ten “digits”
e 0,1,2,3,5,6,7,8,9

In a “binary” system
e Two possibilities: 0 or 1

Why the name “bit”?

In the decimal number system, with have ten “digits”
e 0,1,2,3,5,6,7,8,9

In a “binary” system
e Two possibilities: 0 or 1
e Binary is general word beyond scope of computing

Binary Start System

https://www.space.com/22509-binary-stars.html

Why the name “bit”?

In the decimal number system, with have ten “digits”
e 0,1,2,3,5,6,7,8,9

In a “binary” system
e Two possibilities: 0 or 1
e Binary is general word beyond scope of computing

A “bit” is short for “binary digit”

Binary Start System

https://www.space.com/22509-binary-stars.html

Why use bits in computing?
Why not decimal? (make it easier for humans)

Or something else, like 12?7 (divisible by many things)

Why use bits in computing?
Why not decimal? (make it easier for humans)
Or something else, like 12?7 (divisible by many things)

Reason 1: elegance
e 2 different symbols in the minimum possible

Why use bits in computing?
Why not decimal? (make it easier for humans)
Or something else, like 12?7 (divisible by many things)

Reason 1: elegance
e 2 different symbols in the minimum possible

)

Reason 2: electronics
e computers are built from

transistors and capacitors T
e 0/1 maps nicely to on/off,
open/closed, charged/uncharged

https://www.build-electronic-circuits.com/how-transistors-work/

What if you want more than 2 values?

Use more bits!
1 bit gives 2 values: 0O, 1
2 bits gives 4 values: 00, 01, 10, 11

3 bits gives 8 values: 000, 001, 010, 011, 100, 101, 110, 111

N bits gives 2N values

What is a byte?

A byte is just 8 bits

What is a byte?

A byte is just 8 bits

For example: 10101010

What is a byte?

A byte is just 8 bits

For example: 10101010

How many different byte values are there?

Today's Topics

Binary
e Bits, bytes
e Quantifying bytes

Memory Organization

Data representation

Computers can process large numbers of bytes!

Metric system commonly used
e Just like a kilogram is 1000 grams, a kilobyte is 1000 bytes
 Abbreviate:
kB (kilobyte, thousand), MB (megabyte, million),
GB (gigabyte, billion), TB (terabyte, trillion)

Computers can process large numbers of bytes!

Metric system commonly used
e Just like a kilogram is 1000 grams, a kilobyte is 1000 bytes
 Abbreviate:
kB (kilobyte, thousand), MB (megabyte, million),
GB (gigabyte, billion), TB (terabyte, trillion)

These metrics are used for speed and space
e (Capacity: my hard drive can store 500 GB of data
e Throughput: | can save 100 MB of data per second to by hard
drive

Computers can process large numbers of bytes!

Metric system commonly used
e Just like a kilogram is 1000 grams, a kilobyte is 1000 bytes
 Abbreviate:
kB (kilobyte, thousand), MB (megabyte, million),
GB (gigabyte, billion), TB (terabyte, trillion)

These metrics are used for speed and space
e (Capacity: my hard drive can store 500 GB of data
e Throughput: | can save 100 MB of data per second to by hard
drive (sometimes written MB/s or MBps)

Computers can process large numbers of bytes!

Metric system commonly used
e Just like a kilogram is 1000 grams, a kilobyte is 1000 bytes
 Abbreviate:
kB (kilobyte, thousand), MB (megabyte, million),
GB (gigabyte, billion), TB (terabyte, trillion)

These metrics are used for speed and space
e (Capacity: my hard drive can store 500 GB of data
e Throughput: | can save 100 MB of data per second to by hard
drive (sometimes written MB/s or MBps)

What is the fastest you could fill up this hard drive, if it starts empty?

Gotcha 1: powers of 2

In computing, we often use 1024 instead of 1000
e 1024 is a “round number” in binary, because it is 210
e Just like 1000 is round in decimal because it is 10

Gotcha 1: powers of 2

In computing, we often use 1024 instead of 1000
e 1024 is a “round number” in binary, because it is 210
e Just like 1000 is round in decimal because it is 10

For example

e S0 a kilobyte might mean 1024 bytes instead of 1000 bytes
e A megabyte might mean 1,048,576 bytes (instead of 1,000,000)

Gotcha 1: powers of 2

In computing, we often use 1024 instead of 1000
e 1024 is a “round number” in binary, because it is 210
e Just like 1000 is round in decimal because it is 10

For example

e S0 a kilobyte might mean 1024 bytes instead of 1000 bytes
e A megabyte might mean 1,048,576 bytes (instead of 1,000,000)
 Note: the difference in interpretations is relatively small

Gotcha 2: “b” vs “B”

What is faster, 80 Mbps, or 20 MBps?

e Alittle “b” means bits
e A capital “B” means bytes

Gotcha 2: “b” vs “B”

What is faster, 80 Mbps, or 20 MBps?

e Alittle “b” means bits
e A capital “B” means bytes
e 1 byte = 8 bits, so 80 Mbps is actually 10 MBps

Gotcha 2: “b” vs “B”

What is faster, 80 Mbps, or 20 MBps?

e Alittle “b” means bits
e A capital “B” means bytes
e 1 byte = 8 bits, so 80 Mbps is actually 10 MBps

Bits are often used for networking, and bytes for storage

This suggests you could
download 12.5 MB of data

per second.

Example ad from https://www.spectrum.com/internet.html

Today's Topics

Memory Organization

Data representation
e Numbers

e (Colors and images
e TJext

RAM: Random Access Memory

Memory cell
e circuit that stores 1 bit of information
e often based on capacitors
e |ow voltage is 0, high voltage is 1

RAM: Random Access Memory

Memory cell
e circuit that stores 1 bit of information
e often based on capacitors
 |ow voltage is O, high voltage is 1

Memory a lot of memory cells!
e Typically billions (for gigabytes of memory)

lots of tiny

capacitors

these are built in, and don’t
actually look like this in the chip

RAM: Random Access Memory

Memory cell
e circuit that stores 1 bit of information
e often based on capacitors
e |ow voltage is 0, high voltage is 1

Memory a lot of memory cells!

e Typically billions (for gigabytes of memory)
e How to find the right bits you need to access?

RAM: Random Access Memory

Memory cell
e circuit that stores 1 bit of information
e often based on capacitors
e |ow voltage is 0, high voltage is 1

Memory a lot of memory cells!

e Typically billions (for gigabytes of memory)
e How to find the right bits you need to access?

give groups of bits/bytes addresses

Addresses

bits in memory

- o0 - 0004 4 24 1420000

voltage

low
low
low
low
high
high
high
high
low
high
low
high
low
high
low
high

1 1
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Addresses

addresses

150

151

v

\ 4

bits in memory

- o0 - 0004 4 24 1420000

voltage
low
low
low
low
high
high
high
high
low
high
low
high
low
high
low

high

Addresses

addresses

150

151

request bits at address 150

bits in memory voltage

0 ow @8
0 low @8 —
0 low @S —
0 low @S —
1 high @ —
1 high @ —
1 high @§ —
1 high @S —
>0 ow @§ —
1 high @§ —
0 low @NE§
1 high @S —
0 low @§ —
1 high @S —
0 low @§ —
1 high @§ —

Addresses

addresses

bits in memory

voltage

150

151

v_

low
low
low
low
high
high
high
high

request bits at address 150

get back 00001111

\ 4

- O -0 -0 -0 =4 24 12000 0.

low
high
low
high
low
high
low
high

Today's Topics
Binary
Memory Organization

Data representation
e Numbers

e Colors and images
e Text

e |Instructions

Data representation

Challenge

How can we use ones and zeros (many of them)
to represent a wide variety of data?

Today's Topics
Binary
Memory Organization

Data representation
e Numbers

e (Colors and images
e TJext

e |nstructions

Types of numbers

Imaginary

numbers / whole numbers

/ integers
\ \ other
other

real

Types of numbers

Imaginary

numbers / whole numbers

_ 0,1,2,3,4,...
/ Integers
\ \ other

other

real

Base ten vs two example

digits (decimal): 0301

Base ten vs two example

thousand’s place

hundred’s place
ten’s place
K/ one’s place

digits (decimal): 0301

Base ten vs two example

thousand’s place

hundred’s place
ten’s place
K/ one’s place

digits (decimal): 0301 =0x1000 + 3x100 + 0x10 + 1x1

Base ten vs two example

thousand’s place
hundred’s place

ten’s place
K/ one’s place

digits (decimal): 0301 =0x1000 + 3x100 + 0x10 + 1x1

Step up by factors of ten
because we have ten digits

Base ten vs two example

thousand’s place
hundred’s place

ten’s place
K/ one’s place

digits (decimal): 0301 =0x1000 + 3x100 + 0x10 + 1x1

Step up by factors of ten
because we have ten digits

: :] Number only uses 0’s and 1’s
bits (blnary). 1011 (NOT thousand and eleven)

Base ten vs two example

thousand’s place
hundred’s place

ten’s place
K/ one’s place

digits (decimal): 0301 =0x1000 + 3x100 + 0x10 + 1x1

Step up by factors of ten
because we have ten digits

eight’s place
four’s place

two’s place
K/ one’s place

bits (binary): 1011

Base ten vs two example

thousand’s place
hundred’s place

ten’s place
K/ one’s place

digits (decimal): 0301 =0x1000 + 3x100 + 0x10 + 1x1

Step up by factors of ten
because we have ten digits

eight’s place
four’s place

two’s place
K/ one’s place

bits (binary): 1011

Step up by factors of two
because we have two digits

Base ten vs two example

thousand’s place
hundred’s place

ten’s place
K/ one’s place

digits (decimal): 0301 =0x1000 + 3x100 + 0x10 + 1x1

Step up by factors of ten
because we have ten digits

eight’s place
four’s place

two’s place
K/ one’s place

bits (binary): 1011 =1x8 + 0x2 + 1x2 + 1x1

Step up by factors of two
because we have two digits

Base ten vs two example

>

0x1000 + 3x100 + Ox10 + 1x1

>

1x8 + Ox2 + 1x2 + 1x1 = eleven

thousand’s place
hundred’s place
ten’s place

one’s place

Step up by factors of ten
because we have ten digits

N

digits (decimal): 0301

eight’s place
four’s place
two’s place
one’s place

Step up by factors of two
because we have two digits

M)

bits (binary): 1011

Base ten vs two example

>

0x1000 + 3x100 + Ox10 + 1x1

>

1x8 + Ox2 + 1x2 + 1x1 = eleven

thousand’s place
hundred’s place
ten’s place

one’s place

Step up by factors of ten
because we have ten digits

N

digits (decimal): 0301

eight’s place
four’s place
two’s place
one’s place

Step up by factors of two
because we have two digits

M)

bits (binary): 1011

What decimal number is represented by these bits?
11001

Types of numbers

Imaginary

How to handle negatives?

numbers / whole numbers

i 0,1,2, 3,4, ...
/ Integers
\ \ other

other

real

Types of numbers

Imaginary

numbers

/ integers
.y =3,-2,-1,0,1,2, 3, ...

Negative binary numbers

eleven: 1011

Negative binary numbers

eleven: 1011

negative eleven: -1011

Negative binary numbers

eleven: 1011

negative eleven: -1011

T

Problem: computers know “0” and “1”
What is this “-” thing?

Negative binary numbers

eleven: 1011

negative eleven: -1011

T

Problem: computers know “0” and “1”
What is this “-” thing?

Discuss approaches to representing negative
integers with only 0’s and 1’s with your neighbor

One representation scheme

01011 1s eleven

11011 is negative eleven

One representation scheme

01011/ is eleven

11011| is negative eleven

4

main number

One representation scheme

01011/ is eleven

11011| is negative eleven

0: positive /‘
1: negative

main number

One representation scheme

01011|1s eleven

11011| is negative eleven

0: positive /‘
1: negative

main number

One oddity: 00000 and 10000 are two different ways to
say the same number, zero. In practice, most computers
use a slightly more complicated representation.

Today's Topics
Binary
Memory Organization

Data representation
e Numbers

e (Colors and images
e TJext

e |nstructions

Representing color

All colors of light are a combination of red, green, and blue
e Of varying intensities
e Sometimes abbreviated RGB
e Maximum intensity of all three is white

Representing color

All colors of light are a combination of red, green, and blue
e Of varying intensities
e Sometimes abbreviated RGB
e Maximum intensity of all three is white

How to represent intensity of one of these primary colors?

Red intensity

Strategy
e Strategy: use whole numbers (already know how to represent
these as bits)
e Small number: less red
 Big number: more red

Back to colors

Strategy

e Encode final color as mix of three intensities

111110000000 = ????

Back to colors

Strategy

e Encode final color as mix of three intensities

Back to colors

Strategy

e Encode final color as mix of three intensities

111110000000 = orange

Back to colors

Strategy
e Encode final color as mix of three intensities
e We can represent many colors with 12 bits now

red
L

111110000000 = orange

What about images?

Strategy
e Break into a bunch of small squares,
called pixels
e Record color of each pixel

What about images?

101010000100 pixel 1

Strategy
e Break into a bunch of small squares,
called pixels
e Record color of each pixel

What about images?

101010000100 101010010100 pixel 2

Strategy
e Break into a bunch of small squares,
called pixels
e Record color of each pixel

What about images?

101010000100 101010010100 101010010101 pixel 3

Strategy
e Break into a bunch of small squares,
called pixels
e Record color of each pixel

What about images?

101010000100 101010010100 101010010101 ...

Strategy
e Break into a bunch of small squares,
called pixels
e Record color of each pixel

A note on breaking down problems

Problem: how to represent images as 1’s and 0’s?
e (Can we make it simpler?

A note on breaking down problems

Problem: how to represent images as 1’s and 0’s?
e (Can we make it simpler?

We can represent images as a bunch of color values
We can represent a color value as a three integers

We can represent an integer as a bunch of bits

A note on breaking down problems

Problem: how to represent images as 1’s and 0’s?
e (Can we make it simpler?

We can represent images as a bunch of color values
We can represent a color value as a three integers
We can represent an integer as a bunch of bits

Chain these representations together to represent images as bits!

Today's Topics
Binary
Memory Organization

Data representation
e Numbers

e (Colors and images
e TJext

e |nstructions

How can we encode text, like
“Hello World”, using just bytes?

Morse Code

Morse Code

L

$33 3 3

Morse Code

We can represent text as dots and dashes.
Any ideas on how we can further encode dots and dashes as bits?

Morse Code

L O

38 88

—.

0000 0 0100 0100 111

Morse Code

L O

38 88

—.

0000 0 0100 0100 111

What’s wrong with this?

Morse Code

L O

38 88

—.

0000 0 0100 0100 111

L is this “H” or “EEEE” ?

Morse Code

Jvll ; 3

——

0000 0 0100 0100 111

k- is this “H” or “EEEE” ?

Morse code depends on spaces, which aren’t bits!
(similar to problem we encountered with “-”)

A popular encoding: ASCI|I

American Standard Code for Information Interchange
e \We know how to encode integers as bits

A popular encoding: ASCI|I

American Standard Code for Information Interchange
e \We know how to encode integers as bits
e Assign every English letter (upper and lower case), digit, and
various other symbols a number between 0 and 127
e To save text as bits, convert each character to a number, then
convert that number to bits

http://www.asciitable.com/

Dec Hx Oct Char Dec Hx Oct Html Chr |Dec Hx Oct Html Chr| Dec Hx Oct Html Chr
0 0 000 NUL (null) 32 20 040 Space| 64 40 100 &«#64; [| 96 60 140 `
1 1 001 S0H (start of heading) 33 21 041 ! ! 65 41 101 &«#65; & | 97 61 141 &«#97; a
2 2 002 3TX (start of text) 34 22 042 &«#34; " 66 42 102 «#66; B | 95 62 142 &«#93; b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 «#67; C | 99 63 143 &«#99; C
4 4 004 EOT {(end of transmission) 36 24 044 $ § 68 44 104 «#63; D (100 64 144 d d
S5 5 005 ENQ (encquiry) 37 25 045 % % 69 45 105 &«#69; E |101 65 145 &#l01;
6 6 006 ACK (acknowledge) 38 26 046 & « 70 46 106 «#70; F (102 66 146 f €
7 7 007 BEL (bell) 39 27 047 ' ' 71 47 107 &«#71; G [103 67 147 g 0
8 8 010 BES (backspace) 40 28 050 (| 72 48 110 &«#72; H (104 68 150 h h
9 9 0l1l1 TAE (horizontal tab) 41 29 051 &«#4l;) 73 49 111 &«#73; I [105 69 151 i 1
10 A 012 LF (NL line feed, new line)| 42 24 052 &«#42; * 74 44 112 «#74; J (106 64 152 j]
11 B 013 VT (vertical tab) 43 2B 053 + + 75 4B 113 «#75; K |[107 6B 153 &«#107; kK
12 C 014 FF (NP form feed, new page)| 44 2C 054 , , 76 4C 114 «#76; L |108 6C 154 l 1
13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 «#77; M (109 6D 155 m
14 E 0l6 50 (shift out) 46 2E 056 . . 78 4E 116 I N [110 6E 156 n n
15 F 017 5I (shift in) 47 2F 057 «#47; / 79 4F 117 &«#79; 0 (111 6F 157 &#lll; 0O
16 10 020 DLE (data link escape) 43 30 060 ƶ 0 80 50 120 «#30; P (112 70 160 &#llZ2; p
17 11 021 DC1l (device control 1) 49 31 061 1 1 8l 51 121 &«#381; 0 |113 71 161 &#l13; d
18 12 022 DCZ (device control 2) 50 32 062 2 2 82 52 122 &«#382; R (114 72 162 &#ll4; ¢
19 13 023 DC3 (dewvice control 3) 51 33 063 3 3 83 53 123 &«#383; 5 (115 73 163 &#l15; =
20 14 024 DC4 (dewvice control 4) 52 34 064 4 4 84 54 124 «#384; T (116 74 164 &#ll6; T
2l 15 025 NAK (negative acknowledge) 53 35 065 5: 5 85 55 125 &«#85; U (117 75 165 &#l17; 1
22 16 026 SYN (synchronous idle) 54 36 066 6 6 86 56 126 &«#86; V (118 76 166 v v
23 17 027 ETE (end of trans. block) 55 37 067 7 7 87 57 127 &«#37; W |119 77 167 &#l19; w
24 18 030 CAN (cancel) 56 38 070 8 © 88 58 130 &«#38; X |120 78 170 x X
25 19 031 EM (end of medium) 57 39 071 9 9 89 59 131 &«#389; ¥ (121 79 171 &#lzl: ¥
26 1A 032 SUEB (substitute) 58 34 072 : : 90 5S4 132 «#90; Z (122 7A 172 &#l22; Z
27 1B 033 ESC (escape) 59 3B 073 ; ; 91 SB 133 &«#91; [|123 7B 173 { |
28 1C 034 FS (file separator) 60 3C 074 < < 92 S5C 134 «#92; \ |124 7C 174 &«#lz24; |
29 1D 035 G5 (group separator) 61 3D 075 l; = 93 5D 135]] |125 7D 175 } }
30 1E 036 RS (record separator) 62 3E 076 > > 94 SE 136 &«#94; *~ [126 7E 176 &#l26; ~
31 1F 037 US ({unit separator) 63 3F 077 &«#63; 2 95 S5F 137 _ 127 7F 177 «#127; DEL

Source: www.LookupTables.com

A popular encoding: ASCI|I

American|Standard Code for Information Interchange

e \We know how to encode integers as bits

e Assign every English letter (upper and lower case), digit, and
various other symbols a number between|0 and 127

e To save text as bits, convert each character to a number, then
convert that number to bits

Problem: to be generally useful for text in many
languages, 127 is not nearly enough.

{We need more characters!

Unicode

A numbered set of characters for many languages

e The number assigned a character is its “code point”
e Has 137,439 characters

e Supports 146 different scripts

(a script is the set of characters used in a language; different
languages may share the same script)

e Many of the changes from Python 2 to Python 3 are related to
making unicode the default

Unicode

A numbered set of characters for many languages

e The number assigned a character is its “code point”
e Has 137,439 characters

e Supports 146 different scripts

(a script is the set of characters used in a language; different
languages may share the same script)

e Many of the changes from Python 2 to Python 3 are related to
making unicode the default

N has code point 110

~y

N has code point 241

Code points to bits

Unicode has multiple ways to convert code points to bits
e Useful for compatibility/efficiency

Character Code Point Bits

n — 110

\ 11111111111111100000000000000000

utf-32 01101110000000000000000000000000

~yd

n—» 241

———_, 11111111111111100000000000000000

utf-32 11110001000000000000000000000000

utf-32 is a way to convert code points to bits. If you use the same number of bits
for every code point, you need lots of bits (because there are many code points)

Code points to bits

Unicode has multiple ways to convert code points to bits
e Useful for compatibility/efficiency

Character Code Point Bits

y 01101110
n — 110
\ 11111111111111100000000000000000

utf-32 01101110000000000000000000000000

y 1100001110110001
n — 241
\ 11111111111111100000000000000000

utf-32 11110001000000000000000000000000

utf-8 uses shorter sequences of bits for some characters and longer sequences for
others. Depending on what characters you use, this may save bits.

Today's Topics
Binary
Memory Organization

Data representation
e Numbers

e (Colors and images
e TJext

e |nstructions

Storing code in memory

Programs are also represented in memory

A program is just a bunch of instructions
e Instructions are things like add, subtract, multiply, compare

Storing code in memory

Programs are also represented in memory

A program is just a bunch of instructions
e Instructions are things like add, subtract, multiply, compare

Encoding strategy
e (ive each instruction a number, for example:
1: add
2. multiply
3: compare

Storing code in memory

Programs are also represented in memory

A program is just a bunch of instructions
e Instructions are things like add, subtract, multiply, compare

Encoding strategy
e (ive each instruction a number, for example:
1: add
2. multiply
3: compare

e We already know how to represent numbers as bits, so we can
also represent the instructions that make up a program as bits

Conclusion

Today we learned about

e Binary numbers

e How RAM stores binary numbers

e Units for expressing capacity and throughput

e All information can be represented with bits!

e Encoding strategies for numbers, images, text, and programs

- the details don’t matter for this class. Just get a sense how to

break down the problem of converting different types of data to
ones and zeros

