
[301] Creating Functions
Tyler Caraza-Harter

Learning Objectives Today

Learn how to create functions:

• Map algebraic notation to Python

• Take multiple parameters

• Set default arguments

• Differentiate between output to 

screen and output via return values

• Understand indentation

Modules:

• How to save your functions 

in modules

Flow of execution:

• Trace through execution

• Understand functions that call other functions

• Differentiate definition time vs invocation time

Please continue reading
Chapter 3 of Think Python

Also read “Creating Fruitful
Functions”

Functions are like “mini programs”, 
as in our robot worksheet problem

how do we write functions
like move code?

Types of functions

Sometimes functions do things

• Like “Move Code”

• May produce output with print

• May change variables

Sometimes functions produce values

• Similar to mathematical functions

• Many might say a function “returns a value”

• Downey calls these functions “fruitful” functions 

(we’ll use this, but don’t expect people to generally be aware of
this terminology)

Sometimes functions do both!

Types of functions

Sometimes functions do things

• Like “Move Code”

• May produce output with print

• May change variables

Sometimes functions produce values

• Similar to mathematical functions

• Many might say a function “returns a value”

• Downey calls these functions “fruitful” functions 

(we’ll use this, but don’t expect people to generally be aware of
this terminology)

Sometimes functions do both!

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

Function name is “f”

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

It takes one parameter, “x”

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

In Python, start a function definition with “def” (short for definition),
and use a colon (“:”) instead of an equal sign (“=”)

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

In Python, put the “return” keyword before
the expression associated with the function

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

In Python, indent before the expression (or statements)

Math to Python

g(r) = πr2Math:

def g(r):
 return 3.14 * r ** 2

Python:

Computing the area from the radius

Math to Python

g(r) = πr2Math:

def get_area(radius):
 return 3.14 * radius ** 2

Python:

In Python, it’s common to have longer names for functions and arguments

Math to Python

g(r) = πr2Math:

def get_area(diameter):
 radius = diameter / 2
 return 3.14 * radius ** 2

Python:

It’s also common to have more than one line of code (all indented)

demos for rest of lecture

