
[301] Iteration
Tyler Caraza-Harter

Review
n = 10
if n > 1:
 print('over 1')
 if n > 2:
 print('over 2')
 if n > 3:
 print('over 3')
 if n > 4:
 print('over 4')
 print('hi')

What does it print?

over 1

over 2

over 3

over 4

hi

Review
n = 10
if n > 1:
 print('over 1')
 if n > 2:
 print('over 2')
 if n > 3:
 print('over 3')
 if n > 4:
 print('over 4')
 print('hi')

What does it print?

over 1

over 2

over 3

over 4

hi

Review
n = 10
if n > 1:
 print('over 1')
 if n > 2:
 print('over 2')
 if n > 3:
 print('over 3')
 if n > 4:
 print('over 4')
 print('hi')

What is the smallest integer value we could change n 
to at the beginning and still have it print “hi”?

A: 2

B: 3

C: 4

D: 5

Learning Objectives Today

Reason about loops

• Motivation: need for repetition

• Condition and body of loop

• “while” syntax

• loops inside loops

Understand common use cases

• Reading input from a file

• Taking input from a user

• Computing over ranges of numbers

Learn to avoid pitfalls

• Infinite loops (when unintentional)

• Off-by-one mistakes

Chapter 7 of Think Python

Worksheet

Worksheet

Combination of conditionally skipping forward (2) with 
going back is (5) is called a “while loop”

Worksheet

loop body

loop condition

Worksheet

loop body

loop condition

going back will be implicit in Python, and will happen right after loop body.

you can identify the loop body because it will be indented

Worksheet

loop body

loop condition

going back will be implicit in Python, and will happen right after loop body.

you can identify the loop body because it will be indented

skip past loop body

continue to loop body

Today's Outline

Control Flow Diagrams

Basic syntax for “while”

Demos

Control Flow Diagrams: “if”

x = input(“enter x: ”)
x = float(x)

x < 0

print(“the square root:”)
print(math.sqrt(x)) print(“need a positive”)

TrueFalse

print(“exiting”)

Control Flow Diagrams: “if”

x = input(“enter x: ”)
x = float(x)

x < 0

print(“the square root:”)
print(math.sqrt(x)) print(“need a positive”)

TrueFalse

print(“exiting”)

Wouldn’t it be nice if we 
could go back and give 

the user a second chance?

Control Flow Diagrams: “while”

x = input(“enter x: ”)
x = float(x)

x < 0

print(“the square root:”)
print(math.sqrt(x))

print(“please try again”)
x = input(“enter x: ”)

TrueFalse

print(“exiting”)

Control Flow Diagrams: “while”

x = input(“enter x: ”)
x = float(x)

x < 0

print(“the square root:”)
print(math.sqrt(x))

print(“please try again”)
x = input(“enter x: ”)

TrueFalse

we call this cycle a “loop”

print(“exiting”)

Control Flow Diagrams: “while”

x = input(“enter x: ”)
x = float(x)

x < 0

print(“the square root:”)
print(math.sqrt(x))

print(“please try again”)
x = input(“enter x: ”)

TrueFalse

Each time through is called an “iteration”

print(“exiting”)

Control Flow Diagrams: “while”

x = input(“enter x: ”)
x = float(x)

x < 0

print(“the square root:”)
print(math.sqrt(x))

print(“please try again”)
x = input(“enter x: ”)

TrueFalse

loop body

loop condition

print(“exiting”)

Control Flow Diagrams: “while”

x = input(“enter x: ”)
x = float(x)

x < 0

print(“the square root:”)
print(math.sqrt(x))

print(“please try again”)
x = input(“enter x: ”)

TrueFalse

loop body

loop condition

We keep executing the loop
body while the condition 
is true, so this is called a

“while” loop

print(“exiting”)

Control Flow Diagrams: “while”

x = input(“enter x: ”)
x = float(x)

x < 0

print(“the square root:”)
print(math.sqrt(x))

print(“please try again”)
x = input(“enter x: ”)

TrueFalse

what does this loop do? (note crossed out line)

print(“exiting”)

Control Flow Diagrams: “while”

x = input(“enter x: ”)
x = float(x)

x < 0

print(“the square root:”)
print(math.sqrt(x))

print(“please try again”)
x = input(“enter x: ”)

TrueFalse

runs forever! called an “infinite loop”

print(“exiting”)

Control Flow Diagrams: “while”

x = input(“enter x: ”)
x = float(x)

x < 0

print(“the square root:”)
print(math.sqrt(x))

print(“please try again”)
x = input(“enter x: ”)

TrueFalse

To avoid infinite loops, make
sure something will/can 

eventually happen in the body
to change the condition

print(“exiting”)

Today's Outline

Control Flow Diagrams

Basic syntax for “while”

Demos

Syntax

x = int(input(“enter x: “))

if x < 0:  
 x = int(input(“please try again: ”))

Syntax for “if”

Syntax

x = int(input(“enter x: “))

if x < 0:  
 x = int(input(“please try again: ”))

Syntax for “if”

Syntax

x = int(input(“enter x: “))

while x < 0:  
 x = int(input(“please try again: ”))

Syntax for “while loop” is just like for “if”, just replace “if” with “while”

Syntax

x = int(input(“enter x: “))

while x < 0:  
 x = int(input(“please try again: ”))

this example gives user an arbitrary number of tries
until they get it right

Control Flow

while CONDITION:  
 # your code

Control Flow

while CONDITION:

 

code after the loop…

 block of code…
 maybe many lines…

Control Flow

while CONDITION:

 

code after the loop…

 block of code…
 maybe many lines…

Control Flow

while CONDITION:

 

code after the loop…

 block of code…
 maybe many lines…

at end, always go

back to condition check

True

False

Congrats!
You now understand the 4 key Flow of Execution ideas, 
in the context of Python.

1. generally, proceed forward, one step at a time

2. sometimes go run a “mini program” somewhere else before continuing
to the next line

• This is a function call

3. sometimes skip forward over some lines of code

• Conditional or while loop, when the condition is false

4. sometimes go back to a previous line of code

• while loop. When at the end of body, always go back to condition

three primary exceptions to the general case (1)

Today's Outline

Control Flow Diagrams

Basic syntax for “while”

Demos

