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Learning Objectives Today

List syntax

• creation, indexing, for loop


Comparison to strings

• similarity: len, slicing, concatenation, in, multiply

• differences: flexible types, mutability


Modifying lists

• update, append, pop, sort


Switching between strings and lists

• split, join

Chapter 10 of Think Python



Today's Outline

List Syntax 

Similarities with Strings


Difference 1: Flexibility of Types


Difference 2: Mutability


Transforming between Strings and Lists




A string is a sequence of characters

>>> msg = “hi world!”
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A string is a sequence of characters

>>> msg = “hi world!”

Things we can do with sequences
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• slice
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A string is a sequence of characters

>>> msg = “hi world!”
>>> msg[1]
‘i’

Things we can do with sequences

• index 
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A string is a sequence of characters

>>> msg = “hi world!”
>>> msg[1]
‘i’
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A string is a sequence of characters

>>> msg = “hi world!”
>>> msg[3:]
‘world!’

Things we can do with sequences
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A string is a sequence of characters

>>> msg = “hi world!”
>>> msg[3:]
‘world!’
>>> msg[3:-1]
‘world’

Things we can do with sequences

• index

• slice 
• for loop



A string is a sequence of characters

>>> msg = “hi world!”
>>> for c in msg:
...   print(c)

Things we can do with sequences
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A string is a sequence of characters

>>> msg = “hi world!”
>>> for c in msg:
...   print(c)
... 
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• for loop



A string is a sequence of characters

>>> msg = “hi world!”

What if we want a sequence, of something 
other than characters?


Use a Python list, with any items we want!



>>> msg = “hi world!”
>>> nums = [22, 11, 33]

What if we want a sequence, of something 
other than characters?


Use a Python list, with any items we want!

A list is a sequence of values
(could be integers, or anything else)



A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]

What if we want a sequence, of something 
other than characters?


Use a Python list, with any items we want!
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(could be integers, or anything else)



A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]

(could be integers, or anything else)

Things we can do with sequences

• index
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• for loop



A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> nums[0]
22

(could be integers, or anything else)

Things we can do with sequences

• index 
• slice

• for loop



A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> nums[0]
22
>>> nums[-1]
33

(could be integers, or anything else)

Things we can do with sequences

• index 
• slice

• for loop



A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> nums[1:]
[11, 33]

(could be integers, or anything else)

Things we can do with sequences

• index

• slice 
• for loop



A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> nums[1:]
[11, 33]
>>> nums[3:]
[]

(could be integers, or anything else)

Things we can do with sequences

• index

• slice 
• for loop



A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> for x in nums:
...   print(x)

(could be integers, or anything else)

Things we can do with sequences

• index

• slice

• for loop



A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> for x in nums:
...   print(x)
... 
22
11
33

(could be integers, or anything else)

Things we can do with sequences

• index

• slice

• for loop



Demo: Finding a Sum

Goal: write a function to add a list of numbers


Input:

• Python list containing floats


Output:

• Sum of the numbers


Example: 
>>> nums = [1, 2, 3] 
>>> add_nums(nums) 
6 
>>> add_nums([20, 30]) 
50



Demo: Finding a Sum

Goal: write a function to add a list of numbers


Input:

• Python list containing floats


Output:

• Sum of the numbers


Example: 
>>> nums = [1, 2, 3] 
>>> add_nums(nums) 
6 
>>> add_nums([20, 30]) 
50

Note: I did it the hard way as an example, but these are handy: 
min(lst), max(lst), sum(lst), len(lst)
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Things we can do with strings and lists

1. len


2. slicing


3. concatenation


4. in


5 multiply by an int




1. len(sequence)

string list

>>> msg = “321go” >>> items = [99,11,77,55]



1. len(sequence)

string list

>>> msg = “321go”
>>> len(msg)
5

>>> items = [99,11,77,55]
>>> len(items)
4



2. slicing

string list

>>> msg = “321go”
>>> msg[3:]
‘go’

>>> items = [99,11,77,55]
>>> items[1:3]
[11,77]



3. concatenation

string list

>>> msg = “321go”
>>> msg + “!!!”
‘321go!!!’

>>> items = [99,11,77,55]
>>> items + [1,2,3]
[99,11,77,55,1,2,3]



4. in

string list

>>> msg = “321go”
>>> ‘g’ in msg
True

>>> items = [99,11,77,55]
>>> 11 in items
True



4. in

string list

>>> msg = “321go”
>>> ‘g’ in msg
True
>>> ‘z’ in msg
False

>>> items = [99,11,77,55]
>>> 11 in items
True
>>> 10 in items
False



5. multiply by int

string list

>>> msg = “321go”
>>> msg * 2
‘321go321go’

>>> items = [99,11,77,55]
>>> items * 2
[99,11,77,55,99,11,77,55]
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Items can be any types

string, bool, int, float


even other lists!




Items can be any types

string, bool, int, float


even other lists!


Code example (run in terminal):

l = [True, False, 3, "hey", [1, 2]] 
for item in l: 
  print(type(l)) 



Items can be any types

string, bool, int, float


even other lists!


Code example (run in terminal):

l = [True, False, 3, "hey", [1, 2]] 
for item in l: 
  print(type(l)) 

What to type if we want to get 2 (last item of last item)?
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Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed
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s[0] = “j”
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s[0] = “j” fails!  because strings are immutable



Mutability
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s[0] = “j”  
 

fails!  because strings are immutable
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Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed


s = “hello”  
s[0] = “j”  
 
s += “oooo”

fails!  because strings are immutable



Mutability

Definition
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s += “oooo”

fails!  because strings are immutable

this works!  because we aren’t changing 
the string “hello”.  We’re reassigning a 

new string “hellooooo” to the variable s



Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed


s = “hello”  
s[0] = “j”  
 
s += “oooo”

nums = [3,2,1]  
 
nums[0] = 300  

fails!  because strings are immutable

this works!  because we aren’t changing 
the string “hello”.  We’re reassigning a 

new string “hellooooo” to the variable s



Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed


s = “hello”  
s[0] = “j”  
 
s += “oooo”

nums = [3,2,1]  
 
nums[0] = 300  
# nums is [300,2,1]  

fails!  because strings are immutable

this works!  because we aren’t changing 
the string “hello”.  We’re reassigning a 

new string “hellooooo” to the variable s



Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed


s = “hello”  
s[0] = “j”  
 
s += “oooo”

nums = [3,2,1]  
 
nums[0] = 300  
# nums is [300,2,1]  
nums += [9,8]  

fails!  because strings are immutable

this works!  because we aren’t changing 
the string “hello”.  We’re reassigning a 

new string “hellooooo” to the variable s



Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed


s = “hello”  
s[0] = “j”  
 
s += “oooo”

nums = [3,2,1]  
 
nums[0] = 300  
# nums is [300,2,1]  
nums += [9,8]  
# nums is [300,2,1,9,8]

fails!  because strings are immutable

this works!  because we aren’t changing 
the string “hello”.  We’re reassigning a 

new string “hellooooo” to the variable s



Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed


s = “hello”  
s[0] = “j”  
 
s += “oooo”

nums = [3,2,1]  
 
nums[0] = 300  
# nums is [300,2,1]  
nums += [9,8]  
# nums is [300,2,1,9,8]

fails!  because strings are immutable

this works!  because we aren’t changing 
the string “hello”.  We’re reassigning a 

new string “hellooooo” to the variable s

both work, because 
lists are mutable



Ways to mutate a list

Common Modifications

• L[index] = new_value

• L.append(new_value)

• L.pop(index)

• L.sort()


 
 
Example code:

L = [3,2,1]  
L.append(0)  
L[1] = -1  
L.sort()  
L.pop(0)

Demo these in 
interactive mode



Demo: Finding a Median

Goal: write a function to find the median of a list of numbers


Input:

• Python list containing floats


Output:

• The median


Example: 
>>> nums = [1,5,2,9,8] 
>>> median(nums) 
5 
>>> median([1, 20, 30, 100]) 
25



Today's Outline

List Syntax


Similarities with Strings


Difference 1: Flexibility of Types


Difference 2: Mutability


Transforming between Strings and Lists 



split method

Turns a string into a list

• operates on a string

• takes a separator

• returns a list


>>> S = “this is a test”  
>>> L = S.split(“ “)  
>>> L  
[“this”, “is”, “a”, “test”]



join method

Turns a list into a string

• operates on a separator

• takes a list

• returns a string


>>> L = [“i”, “don’t”, “know”]  
>>> sep = “...“  
>>> sep.join(L)  
i...don't...know  



Demo: Censoring Profanity

Goal: write a function to replace curse words with stars


Input:

• A profane string


Output:

• A sanitized string


Example: 
 
>>> censor(“OMG this class is so fun”) 
‘*** this class is so fun’ 
>>> censor(“the midterm was darn tough”) 
‘the ******* was **** tough’



Demo: Censoring Profanity

Goal: write a function to replace curse words with stars


Input:

• A profane string


Output:

• A sanitized string


Example: 
 
>>> censor(“OMG this class is so fun”) 
‘*** this class is so fun’ 
>>> censor(“the midterm was darn tough”) 
‘the ******* was **** tough’

replaces offensive words like “darn”

and “midterm” with stars


