
[301] Lists
Tyler Caraza-Harter

Learning Objectives Today

List syntax

• creation, indexing, for loop

Comparison to strings

• similarity: len, slicing, concatenation, in, multiply

• differences: flexible types, mutability

Modifying lists

• update, append, pop, sort

Switching between strings and lists

• split, join

Chapter 10 of Think Python

Today's Outline

List Syntax

Similarities with Strings

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

A string is a sequence of characters

>>> msg = “hi world!”

A string is a sequence of characters

>>> msg = “hi world!”

start with

quote

end with

quote

sequence of characters

A string is a sequence of characters

>>> msg = “hi world!”

Things we can do with sequences

• index

• slice

• for loop

A string is a sequence of characters

>>> msg = “hi world!”
>>> msg[1]
‘i’

Things we can do with sequences

• index
• slice

• for loop

A string is a sequence of characters

>>> msg = “hi world!”
>>> msg[1]
‘i’
>>> msg[3]
‘w’

Things we can do with sequences

• index
• slice

• for loop

A string is a sequence of characters

>>> msg = “hi world!”
>>> msg[3:]
‘world!’

Things we can do with sequences

• index

• slice
• for loop

A string is a sequence of characters

>>> msg = “hi world!”
>>> msg[3:]
‘world!’
>>> msg[3:-1]
‘world’

Things we can do with sequences

• index

• slice
• for loop

A string is a sequence of characters

>>> msg = “hi world!”
>>> for c in msg:
... print(c)

Things we can do with sequences

• index

• slice

• for loop

A string is a sequence of characters

>>> msg = “hi world!”
>>> for c in msg:
... print(c)
...
h
i

w
o
r
l
d
!

Things we can do with sequences

• index

• slice

• for loop

A string is a sequence of characters

>>> msg = “hi world!”

What if we want a sequence, of something 
other than characters?

Use a Python list, with any items we want!

>>> msg = “hi world!”
>>> nums = [22, 11, 33]

What if we want a sequence, of something 
other than characters?

Use a Python list, with any items we want!

A list is a sequence of values
(could be integers, or anything else)

A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]

What if we want a sequence, of something 
other than characters?

Use a Python list, with any items we want!

square bracket

instead of quote

sequence

of values,

comma

separated

square bracket

instead of quote

(could be integers, or anything else)

A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]

(could be integers, or anything else)

Things we can do with sequences

• index

• slice

• for loop

A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> nums[0]
22

(could be integers, or anything else)

Things we can do with sequences

• index
• slice

• for loop

A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> nums[0]
22
>>> nums[-1]
33

(could be integers, or anything else)

Things we can do with sequences

• index
• slice

• for loop

A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> nums[1:]
[11, 33]

(could be integers, or anything else)

Things we can do with sequences

• index

• slice
• for loop

A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> nums[1:]
[11, 33]
>>> nums[3:]
[]

(could be integers, or anything else)

Things we can do with sequences

• index

• slice
• for loop

A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> for x in nums:
... print(x)

(could be integers, or anything else)

Things we can do with sequences

• index

• slice

• for loop

A list is a sequence of values

>>> msg = “hi world!”
>>> nums = [22, 11, 33]
>>> for x in nums:
... print(x)
...
22
11
33

(could be integers, or anything else)

Things we can do with sequences

• index

• slice

• for loop

Demo: Finding a Sum

Goal: write a function to add a list of numbers

Input:

• Python list containing floats

Output:

• Sum of the numbers

Example: 
>>> nums = [1, 2, 3] 
>>> add_nums(nums) 
6 
>>> add_nums([20, 30]) 
50

Demo: Finding a Sum

Goal: write a function to add a list of numbers

Input:

• Python list containing floats

Output:

• Sum of the numbers

Example: 
>>> nums = [1, 2, 3] 
>>> add_nums(nums) 
6 
>>> add_nums([20, 30]) 
50

Note: I did it the hard way as an example, but these are handy:
min(lst), max(lst), sum(lst), len(lst)

Today's Outline

List Syntax

Similarities with Strings

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

Things we can do with strings and lists

1. len

2. slicing

3. concatenation

4. in

5 multiply by an int

1. len(sequence)

string list

>>> msg = “321go” >>> items = [99,11,77,55]

1. len(sequence)

string list

>>> msg = “321go”
>>> len(msg)
5

>>> items = [99,11,77,55]
>>> len(items)
4

2. slicing

string list

>>> msg = “321go”
>>> msg[3:]
‘go’

>>> items = [99,11,77,55]
>>> items[1:3]
[11,77]

3. concatenation

string list

>>> msg = “321go”
>>> msg + “!!!”
‘321go!!!’

>>> items = [99,11,77,55]
>>> items + [1,2,3]
[99,11,77,55,1,2,3]

4. in

string list

>>> msg = “321go”
>>> ‘g’ in msg
True

>>> items = [99,11,77,55]
>>> 11 in items
True

4. in

string list

>>> msg = “321go”
>>> ‘g’ in msg
True
>>> ‘z’ in msg
False

>>> items = [99,11,77,55]
>>> 11 in items
True
>>> 10 in items
False

5. multiply by int

string list

>>> msg = “321go”
>>> msg * 2
‘321go321go’

>>> items = [99,11,77,55]
>>> items * 2
[99,11,77,55,99,11,77,55]

Today's Outline

List Syntax

Similarities with Strings

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

Items can be any types

string, bool, int, float

even other lists!

Items can be any types

string, bool, int, float

even other lists!

Code example (run in terminal):

l = [True, False, 3, "hey", [1, 2]]
for item in l:
 print(type(l))

Items can be any types

string, bool, int, float

even other lists!

Code example (run in terminal):

l = [True, False, 3, "hey", [1, 2]]
for item in l:
 print(type(l))

What to type if we want to get 2 (last item of last item)?

Today's Outline

List Syntax

Similarities with Strings

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

s = “hello”  
s[0] = “j”

Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

s = “hello”  
s[0] = “j” fails! because strings are immutable

Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

s = “hello”  
s[0] = “j”  
 

fails! because strings are immutable

Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

s = “hello”  
s[0] = “j”  
 
s += “oooo”

fails! because strings are immutable

Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

s = “hello”  
s[0] = “j”  
 
s += “oooo”

fails! because strings are immutable

this works! because we aren’t changing
the string “hello”. We’re reassigning a

new string “hellooooo” to the variable s

Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

s = “hello”  
s[0] = “j”  
 
s += “oooo”

nums = [3,2,1]  
 
nums[0] = 300  

fails! because strings are immutable

this works! because we aren’t changing
the string “hello”. We’re reassigning a

new string “hellooooo” to the variable s

Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

s = “hello”  
s[0] = “j”  
 
s += “oooo”

nums = [3,2,1]  
 
nums[0] = 300  
nums is [300,2,1]  

fails! because strings are immutable

this works! because we aren’t changing
the string “hello”. We’re reassigning a

new string “hellooooo” to the variable s

Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

s = “hello”  
s[0] = “j”  
 
s += “oooo”

nums = [3,2,1]  
 
nums[0] = 300  
nums is [300,2,1]  
nums += [9,8]  

fails! because strings are immutable

this works! because we aren’t changing
the string “hello”. We’re reassigning a

new string “hellooooo” to the variable s

Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

s = “hello”  
s[0] = “j”  
 
s += “oooo”

nums = [3,2,1]  
 
nums[0] = 300  
nums is [300,2,1]  
nums += [9,8]  
nums is [300,2,1,9,8]

fails! because strings are immutable

this works! because we aren’t changing
the string “hello”. We’re reassigning a

new string “hellooooo” to the variable s

Mutability

Definition

• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

s = “hello”  
s[0] = “j”  
 
s += “oooo”

nums = [3,2,1]  
 
nums[0] = 300  
nums is [300,2,1]  
nums += [9,8]  
nums is [300,2,1,9,8]

fails! because strings are immutable

this works! because we aren’t changing
the string “hello”. We’re reassigning a

new string “hellooooo” to the variable s

both work, because
lists are mutable

Ways to mutate a list

Common Modifications

• L[index] = new_value

• L.append(new_value)

• L.pop(index)

• L.sort()

 
 
Example code:

L = [3,2,1]  
L.append(0)  
L[1] = -1  
L.sort()  
L.pop(0)

Demo these in
interactive mode

Demo: Finding a Median

Goal: write a function to find the median of a list of numbers

Input:

• Python list containing floats

Output:

• The median

Example: 
>>> nums = [1,5,2,9,8] 
>>> median(nums) 
5 
>>> median([1, 20, 30, 100]) 
25

Today's Outline

List Syntax

Similarities with Strings

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

split method

Turns a string into a list

• operates on a string

• takes a separator

• returns a list

>>> S = “this is a test”  
>>> L = S.split(“ “)  
>>> L  
[“this”, “is”, “a”, “test”]

join method

Turns a list into a string

• operates on a separator

• takes a list

• returns a string

>>> L = [“i”, “don’t”, “know”]  
>>> sep = “...“  
>>> sep.join(L)  
i...don't...know  

Demo: Censoring Profanity

Goal: write a function to replace curse words with stars

Input:

• A profane string

Output:

• A sanitized string

Example: 
 
>>> censor(“OMG this class is so fun”) 
‘*** this class is so fun’ 
>>> censor(“the midterm was darn tough”) 
‘the ******* was **** tough’

Demo: Censoring Profanity

Goal: write a function to replace curse words with stars

Input:

• A profane string

Output:

• A sanitized string

Example: 
 
>>> censor(“OMG this class is so fun”) 
‘*** this class is so fun’ 
>>> censor(“the midterm was darn tough”) 
‘the ******* was **** tough’

replaces offensive words like “darn”

and “midterm” with stars

