
[301] Dictionaries
Tyler Caraza-Harter

Learning Objectives Today

Data structures

• definition

• motivation

Dictionaries in Python

• creation, lookup

• updates, deletes

When to use dictionaries over lists

• holes in the labels

• non-integer labels

Chapter 11 of Think Python

Today's Outline

Data Structures

Mappings

Dictionaries

Updates and Deletes

Coding examples

Vocabulary: a list is an
example of a data structure

Data Structures

Definition (from Wikipedia):

a data structure is a collection of data values, 
the relationships among them, 
and the functions or operations 
that can be applied to the data

Data Structures

Definition (from Wikipedia):

a data structure is a collection of data values, 
the relationships among them, 
and the functions or operations 
that can be applied to the data

a list can contain a
bunch of values of

varying types

Data Structures

Definition (from Wikipedia):

a data structure is a collection of data values, 
the relationships among them, 
and the functions or operations 
that can be applied to the data

a list can contain a
bunch of values of

varying types
every value has an

index, representing an
order within the list

Data Structures

Definition (from Wikipedia):

a data structure is a collection of data values, 
the relationships among them, 
and the functions or operations 
that can be applied to the data

a list can contain a
bunch of values of

varying types
every value has an

index, representing an
order within the list

L.sort(), len(L), L.pop(0), L.append(x),
update, iterate (for loop), etc

Why do we need data
structures to organize values?

Instead of just creating lots of
variables?

Motivation

For loops:

• copy/paste is a pain

• don’t know how many times to copy/paste before program runs

For data structures:

• creating many variables is a pain 

(imagine your program analyzes ten thousand values)

• don’t know how many values you will have before program runs

Today's Outline

Data Structures

Mappings

Dictionaries

Updates and Deletes

Coding examples

Mappings

Common data structure approach:

• store many values

• give each value a label

• use labels to lookup values

Mappings

Common data structure approach:

• store many values

• give each value a label

• use labels to lookup values

List example:

nums = [300, 200, 400, 100]

Mappings

Common data structure approach:

• store many values
• give each value a label

• use labels to lookup values

List example:

nums = [300, 200, 400, 100]

we can have many values

Mappings

Common data structure approach:

• store many values

• give each value a label
• use labels to lookup values

List example:

nums = [300, 200, 400, 100]
0 1 2 3

the “labels” are indexes, which 
are implicitly attached to values

Mappings

Common data structure approach:

• store many values

• give each value a label

• use labels to lookup values

List example:

nums = [300, 200, 400, 100]

x = nums[2] # x=400

we use the “label” (i.e., the index) 
to lookup the value (here 400)

Mappings

Common data structure approach:

• store many values

• give each value a label

• use labels to lookup values

List example:

nums = [300, 200, 400, 100]

x = nums[2] # x=400

lists are an inflexible mapping structure,

because we don’t have control over labels

Mappings

Common data structure approach:

• store many values

• give each value a label

• use labels to lookup values

List example:

nums = [300, 200, 400, 100]

x = nums[2] # x=400

lists are an inflexible mapping structure,

because we don’t have control over labels

what if we don’t want consecutive integers

as labels? E.g., 0, 10, and 20 (but not between)?

Mappings

Common data structure approach:

• store many values

• give each value a label

• use labels to lookup values

List example:

nums = [300, 200, 400, 100]

x = nums[2] # x=400

lists are an inflexible mapping structure,

because we don’t have control over labels

what if we don’t want consecutive integers

as labels? E.g., 0, 10, and 20 (but not between)?

what if we want to use strings as labels?

Today's Outline

Data Structures

Mappings

Dictionaries

Updates and Deletes

Coding examples

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values

• values can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_list = [900, 700, 800]  
 
nums_list[1] 700

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values

• values can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

a dictionary would let us give 700 a label other than it’s position

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values

• values can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “second”:700, “third”:800} 

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values

• values can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “second”:700, “third”:800}  

we have the same values

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values

• values can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “second”:700, “third”:800}  

we use curly braces instead of square brackets

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values

• values can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “second”:700, “third”:800}  

0 1 2

we choose the label (called a key) for each value.

Here are keys are the strings “first”, “second”, and “third”

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values

• values can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “second”:700, “third”:800}  

0 1 2

we choose the label (called a key) for each value.

Here are keys are the strings “first”, “second”, and “third”

we put a colon between each key and value

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values

• values can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “second”:700, “third”:800}

nums_dict[“second”] 700

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values

• values can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “second”:700, “third”:800}

nums_dict[“second”] 700

lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values

• values can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “second”:700, “third”:800}

nums_dict[“first”] 900

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values

• values can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “second”:700, “third”:800}

nums_dict[“third”] 800

Why call it a dictionary?

Why call it a dictionary?

this key
(the word)

Why call it a dictionary?

this key
(the word)

maps to…

Why call it a dictionary?

this key
(the word)

maps to…

this value
(the definition)

Today's Outline

Data Structures

Mappings

Dictionaries

Updates and Deletes

Coding examples

Dictionary Updates
>>> lst = ["zero", "ten", "not set"]
>>> lst[2] = "twenty"

Dictionary Updates
>>> lst = ["zero", "ten", "not set"]
>>> lst[2] = "twenty"
>>> lst
['zero', 'ten', 'twenty']

Dictionary Updates
>>> lst = ["zero", "ten", "not set"]
>>> lst[2] = "twenty"
>>> lst
['zero', 'ten', 'twenty']

>>> d = {0: "zero", 10: "ten", 20: "not set"}
>>> d[20] = "twenty"

dictionary updates look like list updates

Dictionary Updates
>>> lst = ["zero", "ten", "not set"]
>>> lst[2] = "twenty"
>>> lst
['zero', 'ten', 'twenty']

>>> d = {0: "zero", 10: "ten", 20: "not set"}
>>> d[20] = "twenty"
>>> d
{0: 'zero', 10: 'ten', 20: 'twenty'}

dictionary updates look like list updates

Dictionary Deletes
>>> lst = ["zero", "ten", "not set"]
>>> lst.pop(-1)
'not set'

Dictionary Deletes
>>> lst = ["zero", "ten", "not set"]
>>> lst.pop(-1)
'not set'
>>> lst
['zero', 'ten']

“not set” isn’t in the list

Dictionary Deletes
>>> lst = ["zero", "ten", "not set"]
>>> lst.pop(-1)
'not set'
>>> lst
['zero', 'ten']

>>> d = {0: "zero", 10: "ten", 20: "not set"}
>>> d.pop(20)
'not set'

dictionary deletes look like list deletes

Dictionary Deletes
>>> lst = ["zero", "ten", "not set"]
>>> lst.pop(-1)
'not set'
>>> lst
['zero', 'ten']

>>> d = {0: "zero", 10: "ten", 20: "not set"}
>>> d.pop(20)
'not set'
>>> d
{0: 'zero', 10: 'ten'}

dictionary deletes look like list deletes

“not set” isn’t in the dict

Today's Outline

Data Structures

Mappings

Dictionaries

Updates and Deletes

Coding examples

Demo 1: Score Keeping App

Goal: let users enter scores for various players

Input:

• Commands: set score, lookup score, get highest

Output:

• The champion and their score

Example: 
 
prompt> python scores.py 
enter a cmd (type "help" for descriptions): set alice 10  
enter a cmd (type "help" for descriptions): high  
Alice: 10 
enter a cmd (type "help" for descriptions): q  
exiting

Demo 2: Print Tornados per Year

Goal: given a CSV of tornados, 
 print how many occurred per year

Input:

• A CSV

Output:

• number per year

Example: 
 
prompt> python tornados.py 
… 
2015: 9 
2016: 2 
2017: 4

Demo 3: Wizard of Oz

Goal: count how often each word appears in the Wizard of Oz

Input:

• Plaintext of book (from Project Gutenberg)

Output:

• The count of each word

Example: 
 
prompt> python scores.py 
enter a cmd (type "help" for descriptions): set alice 10  
enter a cmd (type "help" for descriptions): high  
Alice: 10 
enter a cmd (type "help" for descriptions): q  
exiting

