
[301] Advanced Functions
Tyler Caraza-Harter

Learning Objectives Today

Iterators

• what is an iteratable?

• how to read files, with sequences or iterators

• advantages of laziness

• writing your own generators

References to functions

• ways to get a reference

• map

• sort

Learning Objectives Today

Iterators

• what is an iteratable?

• how to read files, with sequences or iterators

• advantages of laziness

• writing your own generators

References to functions

• ways to get a reference

• map

• sort

Revisiting the For Loop

for loops can iterate over sequences

• list values

• string characters

• other sequences

for letter in “hello”:
 print(letter)

for num in [1,2,3]:
 print(num)

Revisiting the For Loop

for loops can iterate over sequences

• list values

• string characters

• other sequences

More precisely…

for letter in “hello”:
 print(letter)

for num in [1,2,3]:
 print(num)

Revisiting the For Loop

for loops can iterate over sequences

• list values

• string characters

• other sequences

More precisely…

for loops can iterate over iterables

• sequences are iterable

• other things (like dict values) are also iterable

Example: Dictionary Values
d = {1:”one”, 2:”two”, 3:”three”}
d.values() # type is <class ‘dict_values'>

Example: Dictionary Values
d = {1:”one”, 2:”two”, 3:”three”}
d.values() # type is <class ‘dict_values'>

vals = list(d.values())

Example: Dictionary Values
d = {1:”one”, 2:”two”, 3:”three”}
d.values() # type is <class ‘dict_values'>

vals = list(d.values())

for v in vals:
 print(v)

Prints (or other order):
two

one

three

Example: Dictionary Values
d = {1:”one”, 2:”two”, 3:”three”}
d.values() # type is <class ‘dict_values'>

vals = list(d.values())

for v in vals:
 print(v)

it = iter(d.values())

Example: Dictionary Values
d = {1:”one”, 2:”two”, 3:”three”}
d.values() # type is <class ‘dict_values'>

vals = list(d.values())

for v in vals:
 print(v)

it = iter(d.values())

if you can call iter(x),

then x is iterable,

by definition

Example: Dictionary Values
d = {1:”one”, 2:”two”, 3:”three”}
d.values() # type is <class ‘dict_values'>

vals = list(d.values())

for v in vals:
 print(v)

it = iter(d.values())

d.values() is iterable, and it is an iterator

Example: Dictionary Values
d = {1:”one”, 2:”two”, 3:”three”}
d.values() # type is <class ‘dict_values'>

vals = list(d.values())

for v in vals:
 print(v)

it = iter(d.values())

for v in it:
 print(v)

Both print the same:
two

one

three

Example: Dictionary Values
d = {1:”one”, 2:”two”, 3:”three”}
d.values() # type is <class ‘dict_values'>

vals = list(d.values())

for v in vals:
 print(v)

it = iter(d.values())

for v in it:
 print(v)

Both print the same:
two

one

three

NOTE: the for loop automatically
calls iter if necessary, so we
could have written this instead:

for v in d.values():  
 print(v)

Example: Dictionary Values
d = {1:”one”, 2:”two”, 3:”three”}
d.values() # type is <class ‘dict_values'>

vals = list(d.values())

for v in vals:
 print(v)

print(vals[2])

it = iter(d.values())

for v in it:
 print(v)

We can index over a sequence. 
Example prints:
three

Example: Dictionary Values
d = {1:”one”, 2:”two”, 3:”three”}
d.values() # type is <class ‘dict_values'>

vals = list(d.values())

for v in vals:
 print(v)

print(vals[2])

it = iter(d.values())

for v in it:
 print(v)

print(it[2]) # BAD!

Example: Dictionary Values
d = {1:”one”, 2:”two”, 3:”three”}
d.values() # type is <class ‘dict_values'>

vals = list(d.values())

for v in vals:
 print(v)

print(vals[2])

it = iter(d.values())

for v in it:
 print(v)

print(it[2]) # BAD!

You can only loop over

iterators, not index with them

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'dict_valueiterator' object is not subscriptable

Comparison

sequence iterator

can use

for loop

can do

indexing

Comparison

sequence iterator

can use

for loop

can do

indexing

why ever use the less-capable iterator?

Comparison

sequence iterator

can use

for loop

can do

indexing

why ever use the less-capable iterator?

it’s often faster (as we’ll see later)

Learning Objectives Today

Iterators

• what is an iteratable?

• how to read files, with sequences or iterators

• advantages of laziness

• writing your own generators

References to functions

• ways to get a reference

• map

• sort

Reading Files

path = “file.txt”
f = open(path)

Reading Files

path = “file.txt”
f = open(path)

open(…) function is built in

Reading Files

path = “file.txt”
f = open(path)

it takes a string argument,

which contains path to a file

This is a test!
3
2
1
Go!

file.txt

c:\users\tyler\my-doc.txt

/var/log/events.log

../data/input.csv

Reading Files

path = “file.txt”
f = open(path)

it returns a file object

This is a test!
3
2
1
Go!

file.txt

Reading Files

path = “file.txt”
f = open(path)

it returns a file object

This is a test!
3
2
1
Go!

file.txt

file objects are iterable!

Reading Files

path = “file.txt”
f = open(path)

for line in f:  
 print(line)

This is a test!
3
2
1
Go!

file.txt

Output

This is a test!

3

2

1

Go!

Reading Files

path = “file.txt”
f = open(path)

for line in f:  
 print(line.strip())

This is a test!
3
2
1
Go!

file.txt

Output

This is a test!

3

2

1

Go!

Reading Files

path = “file.txt”
f = open(path)

for line in f:  
 print(line.strip())

This is a test!
3
2
1
Go!

file.txt

Output
Another option: use the

iterable file object to create a list

Reading Files

path = “file.txt”
f = open(path)
lines = list(f) # create list from iterable

for line in f:  
 print(line.strip())

This is a test!
3
2
1
Go!

file.txt

Another option: use the

iterable file object to create a list

Reading Files

path = “file.txt”
f = open(path)
lines = list(f) # create list from iterable

for line in f:  
 print(line.strip())

This is a test!
3
2
1
Go!

file.txt

Another option: use the

iterable file object to create a list

lines is a list: 
[“This is a test\n”, “3\n”, “2\n”, “1\n”, “Go!\n”]

Reading Files

path = “file.txt”
f = open(path)
lines = list(f) # create list from iterable

for line in f lines:  
 print(line.strip())

This is a test!
3
2
1
Go!

file.txt

Another option: use the

iterable file object to create a list

Reading Files

path = “file.txt”
f = open(path)
lines = list(f) # create list from iterable

for line in lines:  
 print(line.strip())

This is a test!
3
2
1
Go!

file.txt

Another option: use the

iterable file object to create a list

Learning Objectives Today

Iterators

• what is an iteratable?

• how to read files, with sequences or iterators

• advantages of laziness

• writing your own generators

References to functions

• ways to get a reference

• map

• sort

Demo 1: Add numbers in a file

Goal: read all lines from a file as integers and add them

Input:

• file containing 50 million numbers between 0 and 100

Output:

• The sum of the numbers

Example: 
 
prompt> python sum.py  
2499463617

Demo 1: Add numbers in a file

Goal: read all lines from a file as integers and add them

Input:

• file containing 50 million numbers between 0 and 100

Output:

• The sum of the numbers

Example: 
 
prompt> python sum.py  
2499463617

Two ways:

• Put all lines in a list first

• Directly use iterable file

Learning Objectives Today

Iterators

• what is an iteratable?

• how to read files, with sequences or iterators

• advantages of laziness

• writing your own generators

References to functions

• ways to get a reference

• map

• sort

Reviewing Return
def f():
 return “A”
 return “B”
 return “C”

print(“Got”, f())

What is printed?

Reviewing Return
def f():
 return “A”
 return “B”
 return “C”

print(“Got”, f())

What is printed?

Got A

Reviewing Return
def f():
 return “A”
 return “B”
 return “C”

print(“Got”, f())

What is printed?

Got A

Let’s say we want to return 3 values

Reviewing Return
def f():
 items = []
 items.append(“A”)
 items.append(“B”)
 items.append(“C”)
 return items

for item in f():  
 print(“Got”, item)   What is printed?

Reviewing Return
def f():
 items = []
 items.append(“A”)
 items.append(“B”)
 items.append(“C”)
 return items

for item in f():  
 print(“Got”, item)   What is printed?

Got A
Got B
Got C

Reviewing Return
def f():
 items = []
 print(“Produce A”)
 items.append(“A”)
 print(“Produce B”)
 items.append(“B”)
 print(“Produce C”)
 items.append(“C”)
 return items

for item in f():  
 print(“Got”, item)  

What is printed?

Reviewing Return
def f():
 items = []
 print(“Produce A”)
 items.append(“A”)
 print(“Produce B”)
 items.append(“B”)
 print(“Produce C”)
 items.append(“C”)
 return items

for item in f():  
 print(“Got”, item)  

What is printed?

Produce A
Produce B
Produce C

Got A
Got B
Got C

Reviewing Return
def f():
 items = []
 print(“Produce A”)
 items.append(“A”)
 print(“Produce B”)
 items.append(“B”)
 print(“Produce C”)
 items.append(“C”)
 return items

for item in f():  
 print(“Got”, item)  

What is printed?

Produce A
Produce B
Produce C

Got A
Got B
Got C

everything is produced…

Reviewing Return
def f():
 items = []
 print(“Produce A”)
 items.append(“A”)
 print(“Produce B”)
 items.append(“B”)
 print(“Produce C”)
 items.append(“C”)
 return items

for item in f():  
 print(“Got”, item)  

What is printed?

Produce A
Produce B
Produce C

Got A
Got B
Got C

everything is produced…

…before anything is used

Reviewing Return
def f():
 items = []
 print(“Produce A”)
 items.append(“A”)
 print(“Produce B”)
 items.append(“B”)
 print(“Produce C”)
 items.append(“C”)
 return items

for item in f():  
 print(“Got”, item)  

What is printed?

Produce A
Produce B
Produce C

Got A
Got B
Got C

everything is produced…

…before anything is used

Sometimes we want to be “lazy” and only 
produce values right before they’re needed

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

What is printed?

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

What is printed?

nothing

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

What is printed?

nothing

we never use items

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

What is printed?

nothing

type of items is:

<class 'generator'>

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

What is printed?

nothing

type of items is:

<class 'generator'>

weird, no? 
we don’t return anything

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?

nothing

type of items is:

<class 'generator'>

weird, no? 
we don’t return anything

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?

iteration 1

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce Aiteration 1

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce Aiteration 1

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce A

Aiteration 1

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce A

Aiteration 2

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce A

A

Produce B

resume where

we left off!

iteration 2

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce A

A

Produce B

iteration 2

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce A

A

Produce B

B

iteration 2

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce A

A

Produce B

B

iteration 3

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce A

A

Produce B

B

Produce C

iteration 3

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce A

A

Produce B

B

Produce C

iteration 3

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce A

A

Produce B

B

Produce C

C

iteration 3

Introducing Yield
def f():
 print(“Produce A”)
 yield “A”
 print(“Produce B”)
 yield “B”
 print(“Produce C”)
 yield “C”

items = f()
for item in items:  
 print(item)  

what is yield?
• produce results, like return

• can yield multiple values, unlike return

• functions with yield are lazy 

(don’t run until result is needed)

• functions with yield automatically 

return a generator, a type of iterator

What is printed?
Produce A

A

Produce B

B

Produce C

C

observations
• we bounce in and out of 

a generator function

• the function starts producing 

values even before it finishes

Demo 2: Squares

Goal: generate sequence of squares

Input:

• none

Output:

• Squares

Example: 
 
prompt> python squares.py  
1  
4  
9  
16  
25  
...

Iterator/Generator Vocabulary Recap

Sequence: object we can loop over (with for) AND index into

Iterator: object we can loop over (with for)

Iterable: object x that can give us an iterator with iter(x)

Generator: iterator returned by a function that yields

Generator function: function that returns a generator

Learning Objectives Today

Iterators

• what is an iteratable?

• how to read files, with sequences or iterators

• advantages of laziness

• writing your own generators

References to functions

• ways to get a reference

• map

• sort

Python Tutor

why does Python Tutor visualize functions this way?

Functions are objects

Functions are just a special type of object!

• function name is reference

• function code is the object

State:

references objects

Functions are objects

Functions are just a special type of object!

• function name is reference

• function code is the object

State:

references objects

ghost code: 
print(‘boo’)

Functions are objects

Functions are just a special type of object!

• function name is reference

• function code is the object

State:

references objects

ghost code: 
print(‘boo’)

when we say f()

• look for a variable named f

• follow the reference to some code

• run that code

Functions are objects

Functions are just a special type of object!

• function name is reference

• function code is the object

State:

references objects

ghost code: 
print(‘boo’)

when we say f()

• look for a variable named f
• follow the reference to some code

• run that code

Functions are objects

Functions are just a special type of object!

• function name is reference

• function code is the object

State:

references objects

ghost code: 
print(‘boo’)

when we say f()

• look for a variable named f

• follow the reference to some code
• run that code

Functions are objects

Functions are just a special type of object!

• function name is reference

• function code is the object

State:

references objects

ghost code: 
print(‘boo’)

when we say f()

• look for a variable named f

• follow the reference to some code

• run that code

Python Tutor: Example 1

x = ["A", "B", "C"]
y = x

def f(items):
 print(len(items))

f(x)

g = f
g(x)

Python Tutor: Example 2

def call_it(my_function):
 print("calling", my_function)
 my_function()

def test():
 print("inside test function")

call_it(test)

Python Tutor: Example 2

def call_it(my_function):
 print("calling", my_function)
 my_function()

def test():
 print("inside test function")

call_it(test)

functions like test are sometimes

called “callbacks” because we’re

asking somebody else’s function to call 
back to our own code

Ways to get a reference

def f(z):
 # way 3: param  
 print(z)

x = [1,2,3] # way 1: new object
y = x # way 2: copy ref
f(x)

way 1: def
def f():  
 print(‘hi’)  

def call_me(h):  
 # way 3: param  
 h()  

g = f # way 2: copy ref  
call_me(f)

refs to normal objects

refs to function objects

Ways to get a reference

def f(z):
 # way 3: param  
 print(z)

x = [1,2,3] # way 1: new object
y = x # way 2: copy ref
f(x)

way 1: def
def f():  
 print(‘hi’)  

def call_me(h):  
 # way 3: param  
 h()  

g = f # way 2: copy ref  
call_me(f)

refs to normal objects

refs to function objects

Ways to get a reference

def f(z):
 # way 3: param  
 print(z)

x = [1,2,3] # way 1: new object
y = x # way 2: copy ref
f(x)

way 1: def
def f():  
 print(‘hi’)  

def call_me(h):  
 # way 3: param  
 h()  

g = f # way 2: copy ref  
call_me(f)

refs to normal objects

refs to function objects

Ways to get a reference

def f(z):
 # way 3: param  
 print(z)

x = [1,2,3] # way 1: new object
y = x # way 2: copy ref
f(x)

way 1: def
def f():  
 print(‘hi’)  

def call_me(h):  
 # way 3: param  
 h()  

g = f # way 2: copy ref  
call_me(f)

refs to normal objects

refs to function objects

Learning Objectives Today

Iterators

• what is an iteratable?

• how to read files, with sequences or iterators

• advantages of laziness

• writing your own generators

References to functions

• ways to get a reference

• map

• sort

map function

We often will want to run a function on every item in a list

• input 1: a function

• input 2: a list

• output: list produced by running function on items in input list

nums = -2 9 0 -8 0 -3

2 9 0 8 0 3

map(abs, nums)

map function

We often will want to run a function on every item in a list

• input 1: a function

• input 2: a list

• output: list produced by running function on items in input list

nums = -2 9 0 -8 0 -3

2 9 0 8 0 3

map(abs, nums)

map function

We often will want to run a function on every item in a list

• input 1: a function

• input 2: a list

• output: list produced by running function on items in input list

nums = -2 9 0 -8 0 -3

2 9 0 8 0 3

map(abs, nums)

map function

We often will want to run a function on every item in a list

• input 1: a function

• input 2: a list

• output: list produced by running function on items in input list

nums = -2 9 0 -8 0 -3

2 9 0 8 0 3

map(abs, nums)

map function

We often will want to run a function on every item in a list

• input 1: a function

• input 2: a list

• output: list produced by running function on items in input list

nums = -2 9 0 -8 0 -3

2 9 0 8 0 3

map(abs, nums)

map code

def map(f, items):
 result = []  
 for item in items:  
 new_item = f(item)
 result.append(new_item)
 return result

map code

def map(f, items):
 result = []  
 for item in items:  
 new_item = f(item)
 result.append(new_item)
 return result

>>> map(abs, [1, -1])
[1, 1]
>>> map(abs, [0, 8, -9, -5, 10])
[0, 8, 9, 5, 10]

Note: Python has a built-in map function.

Like this, but returns a generator instead of list.

Learning Objectives Today

Iterators

• what is an iteratable?

• how to read files, with sequences or iterators

• advantages of laziness

• writing your own generators

References to functions

• ways to get a reference

• map

• sort

Learning Objectives Today

List of tuples:

names = [ 
 (“Cindy”, “Baker”),  
 (“Alice”, “Clark”),  
 (“Bob”, “Adams”),  
]  

Cindy Baker

Bob Adams

Alice Clark

Learning Objectives Today

List of tuples:

names = [ 
 (“Cindy”, “Baker”),  
 (“Alice”, “Clark”),  
 (“Bob”, “Adams”),  
]  

names.sort()

Cindy Baker

Bob Adams

Alice Clark

Alice Clark

Bob Adams

Cindy Baker

sorting tuples is done
on first element

(ties go to 2nd element)

Learning Objectives Today

List of tuples:

names = [ 
 (“Cindy”, “Baker”),  
 (“Alice”, “Clark”),  
 (“Bob”, “Adams”),  
]  

names.sort()

Cindy Baker

Bob Adams

Alice Clark

Alice Clark

Bob Adams

Cindy Baker

what if we want to
sort by the last name?

Learning Objectives Today

List of tuples:

names = [ 
 (“Cindy”, “Baker”),  
 (“Alice”, “Clark”),  
 (“Bob”, “Adams”),  
]  

names.sort()

Cindy Baker

Bob Adams

Alice Clark

Alice Clark

Bob Adams

Cindy Baker

what if we want to
sort by the last name?

or by the length of the name?

or by something else?

Learning Objectives Today

List of tuples:

names = [ 
 (“Cindy”, “Baker”),  
 (“Alice”, “Clark”),  
 (“Bob”, “Adams”),  
]

def extract(name_tuple):  
 return name_tuple[1]

list(map(extract, names))

Cindy Baker

Bob Adams

Alice Clark

[“Baker”, “Clark”, “Adams”]

Learning Objectives Today

List of tuples:

names = [ 
 (“Cindy”, “Baker”),  
 (“Alice”, “Clark”),  
 (“Bob”, “Adams”),  
]

def extract(name_tuple):  
 return name_tuple[1]

list(map(extract, names))

Cindy Baker

Bob Adams

Alice Clark

[“Baker”, “Clark”, “Adams”]

this is what we

want to sort on

Learning Objectives Today

List of tuples:

names = [ 
 (“Cindy”, “Baker”),  
 (“Alice”, “Clark”),  
 (“Bob”, “Adams”),  
]

def extract(name_tuple):  
 return name_tuple[1]

names.sort(key=extract)

Cindy Baker

Bob Adams

Alice Clark

Bob Adams

Cindy Baker

Alice Clark

Conclusion

Iterators

• like sequences, with for loops, but without indexing

• a function with yields automatically returns a generator

• a generator is a kind of iterator

Conclusion

Iterators

• like sequences, with for loops, but without indexing

• a function with yields automatically returns a generator

• a generator is a kind of iterator

Function references

• three ways to get them: (1) def, (2) assignment, (3) arg passing

• passing a function to a function: callback

• useful for map and sort

