
[301] Randomness
Tyler Caraza-Harter



Announcement 1: Recommended popular 
stats books (for winter-break reading)

How to Measure Anything 
by Douglas W. Hubbard

Thinking, Fast and Slow 
by Daniel Kahneman

Statistics Done Wrong 
by Alex Reinhart

The Signal and the Noise 
by Nate Silver



Announcement 2: Course Evaluations

Section 1: 
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580893 

Section 2: 
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580894 

Evaluations are important generally, 
but especially this semester 
• my first time teaching CS 301

• we made major changes to CS 301 this semester

• I promise to read every evaluation after the semester ends

https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580893
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580894


Announcement 3: Final Exam Prep
Details: similar to midterms 
• worth 20%

• 2 hours on Dec 19th at 7:45am (in the morning!)

• you can have a single page of notes (both sides), as usual

• we'll use any extra time this Wed to review

• cumulative, across whole semester

• topics NOT included on the exam: beautifulsoup, regression, randomness


Recommended prep 
• make sure you understand all the worksheet problems

• review the readings, especially anything I took the time to write myself

• review everything you got wrong on the midterms

• review the slides

• review the code you wrote for the projects


Comments on old finals 
• we'll post them, because people ask for them

• content has evolved a lot in the last 3rd of CS 301, 

so they're not great review material



Which series was randomly generated? 
Which did I pick by hand?
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Why Randomize?

Games

Security

Simulation our focus



Outline

choice()


pseudorandom: debugging/seeding


visualization: bar plots vs. histograms


normal()


statistical significance: an intuitive approach
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from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])

list of things to 
randomly choose from



choice
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choice
from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

result = choice(["rock", "paper", "scissors"])
print(result)

scissors 
rock

Output:

each time choice is 
called, a value is randomly 

selected (will vary run to run)
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choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

for simulation, we'll often want 
to compute many random results
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from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')



choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items



choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

choice(["rock", "paper", "scissors"], size=(3,2))

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items



choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

choice(["rock", "paper", "scissors"], size=(3,2))

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items

numpy shape tuple



choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

choice(["rock", "paper", "scissors"], size=(3,2))

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items

array([['rock', 'scissors'],
       ['paper', 'rock'],
       ['scissors', 'paper']], dtype='<U8')



choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

choice(["rock", "paper", "scissors"], size=(3,2))

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items

array([['rock', 'scissors'],
       ['paper', 'rock'],
       ['scissors', 'paper']], dtype='<U8')

???-dimensional ndarray with ??? items



choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

choice(["rock", "paper", "scissors"], size=(3,2))

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items

array([['rock', 'scissors'],
       ['paper', 'rock'],
       ['scissors', 'paper']], dtype='<U8')

2-dimensional ndarray with 6 items



Random values and Pandas
from numpy.random import choice, normal

# random Series
choice(["rock", "paper", "scissors"], size=5)



Random values and Pandas
from numpy.random import choice, normal

# random Series
       choice(["rock", "paper", "scissors"], size=5)



Random values and Pandas
from numpy.random import choice, normal

# random Series
Series(choice(["rock", "paper", "scissors"], size=5))



Random values and Pandas
from numpy.random import choice, normal

# random Series
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0       paper
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3        rock
4        rock
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Random values and Pandas
from numpy.random import choice, normal

# random Series
Series(choice(["rock", "paper", "scissors"], size=5))

# random DataFrame
DataFrame(choice(["rock", "paper", "scissors"], size=(5,3)))

0       paper
1    scissors
2       paper
3        rock
4        rock
dtype: object
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Question 1: how can we make sure the randomization isn't biased?
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Demo 1: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Question 2: how can we make it biased (if we want it to be)?



Random Strings vs. Random Ints
from numpy.random import choice, normal

# random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])



Random Strings vs. Random Ints
from numpy.random import choice, normal

# random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])

# random int: 0, 1, or 2
choice([0, 1, 2])
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from numpy.random import choice, normal

# random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])

# random int: 0, 1, or 2
choice([0, 1, 2])

# random int (approach 2): 0, 1, or 2
choice(3)

same



Random Strings vs. Random Ints
from numpy.random import choice, normal

# random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])

# random int: 0, 1, or 2
choice([0, 1, 2])

# random int (approach 2): 0, 1, or 2
choice(3)

random non-negative int

that is less than 3

same



Outline

choice()


pseudorandom: debugging/seeding


visualization: bar plots vs. histograms


normal()


statistical significance: an intuitive approach
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s = Series(choice(10, size=5))
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s = Series(choice(10, size=5))

s.plot.line()

percents = []
for i in range(1, len(s)):
    diff = 100 * (s[i] / s[i-1] - 1)
    percents.append(diff)

what are we computing for diff?
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s.plot.line()
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for i in range(1, len(s)):
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• syntax or runtime errors easier than semantic bugs

• small inputs are easier than big inputs


a bug is reproducible if it shows up every time you run the 
program with the same inputs
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Reproducibility

some bugs are easier to debug than others

• syntax or runtime errors easier than semantic bugs

• small inputs are easier than big inputs


a bug is reproducible if it shows up every time you run the 
program with the same inputs


who had a non-reproducible bug for a project this semester? 

non-reproducible bugs

• are hard to fix

• common with programs based on randomness


fortunately, the random values we've been generating are 
not really, truly random.  They're merely pseudorandom.
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Pseudorandom
684, 559, 629, 192, 835, ...

37, 235, 908, 72, 767, ...

168, 527, 493, 584, 534, ...

874, 664, 249, 643, 952, ...

122, 174, 439, 709, 897, ...
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... billions more ...

pseudorandom generators

• can generate billions of different 

seemingly random sequences

• subsequent calls to choice progress 

along a sequence

• every program run starts with a 

different sequence

• we can choose our sequence



Pseudorandom
0: 684, 559, 629, 192, 835, ...

1: 37, 235, 908, 72, 767, ...

2: 168, 527, 493, 584, 534, ...

3: 874, 664, 249, 643, 952, ...

4: 122, 174, 439, 709, 897, ...

5: 867, 206, 701, 998, 118, ...

6: 906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different 

seemingly random sequences

• subsequent calls to choice progress 

along a sequence

• every program run starts with a 

different sequence

• we can choose our sequence

seed



Seeding
from numpy.random import choice, normal
import numpy as np

np.random.seed(1)
choice(10, size=5) array([5, 8, 9, 5, 0])
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array([8, 8, 6, 2, 8])
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Seeding
from numpy.random import choice, normal
import numpy as np

np.random.seed(1)
choice(10, size=5)

np.random.seed(2)
choice(10, size=5)

np.random.seed(1)
choice(10, size=5)

array([5, 8, 9, 5, 0])
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Seeding
from numpy.random import choice, normal
import numpy as np

np.random.seed(1)
choice(10, size=5)

np.random.seed(2)
choice(10, size=5)

np.random.seed(1)
choice(10, size=5)

array([5, 8, 9, 5, 0])

array([5, 8, 9, 5, 0])

array([8, 8, 6, 2, 8])

Debug tip: if you have a bug related to randomness, find a seed that

causes the bug to arise, then use that seed until you find the problem.


(don't forget to remove it when you're done!)



Outline

choice()


pseudorandom: debugging/seeding


visualization: bar plots vs. histograms


normal()


statistical significance: an intuitive approach



Frequencies across categories

s = Series(["rock", "rock", "paper",  
            "scissors", "scissors", "scissors"])

s.value_counts().plot.bar()

bars are a good way to view frequencies across categories



Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().plot.bar()

bars are a bad way to view frequencies across numbers

numbers not ordered



Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().sort_index().plot.bar()

bars are a bad way to view frequencies across numbers

gap between 1 and 8 not obvious



Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().sort_index().plot.bar()  
s.plot.hist()

bars are a bad way to view frequencies across numbers



Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().sort_index().plot.bar()  
s.plot.hist()

histograms are a good way to view frequencies across numbers

this kind of plot is called a histogram



Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist()

a histogram "bins" nearby numbers to create discrete bars

histograms are a good way to view frequencies across numbers

both 0 and 0.1



Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=10)

we can control the number of bins

histograms are a good way to view frequencies across numbers



Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=3)

too few bins provides too little detail

histograms are a good way to view frequencies across numbers



Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=100)

too many bins provides too much detail (equally bad)

histograms are a good way to view frequencies across numbers



Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=10)

numpy chooses the default bin boundaries

histograms are a good way to view frequencies across numbers



Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=[0,1,2,3,4,5,6,7,8,9,10])

we can override the defaults

histograms are a good way to view frequencies across numbers



Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=range(11))

this is easily done with range

histograms are a good way to view frequencies across numbers
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If we flip 10 coins repeatedly, we'll get varying numbers of heads

6 heads



Demo 2: coin flips

If we flip 10 coins repeatedly, we'll get varying numbers of heads

6 heads

If we flip 100 coins, 10K times, how often do we get each head count?

number of samples

sample size



Demo 2: result
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this shape resembles what we often call 
a normal distribution or a "bell curve"

in general, if we take large samples enough 
times, the results will look like this 
(we won't discuss exceptions here)



Demo 2: result

number of heads (out of 100)

this shape resembles what we often call 
a normal distribution or a "bell curve"

in general, if we take large samples enough 
times, the results will look like this 
(we won't discuss exceptions here)

numpy can directly

generate random

numbers fitting a


normal distribution



Outline

choice()


pseudorandom: debugging/seeding


visualization: bar plots vs. histograms


normal()


statistical significance: an intuitive approach



normal
from numpy.random import choice, normal
import numpy as np

for i in range(10):
    print(normal())



normal
from numpy.random import choice, normal
import numpy as np

for i in range(10):
    print(normal())

-0.18638553993371157
0.02888452916769247
1.2474561113726423
-0.5388224399358179
-0.45143322136388525
-1.4001861112018241
0.28119371511868047
0.2608861898556597
-0.19246288728955144
0.2979572961710292

Output:

average is 0 (over many calls)


numbers closer to 0 more likely


-x just as likely as x




normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))



normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist()



normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist()



normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100)



normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc=    , scale=    )



normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc=    , scale=    )

try plugging in different values

(defaults are 0 and 1, respectively)



Demo 3: plot overlay



Demo 3: plot overlay

10K samples of 100 coin flips
10K samples from normal(size=10000)
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goal: play with loc and scale arguments to normal until gray overlaps red

version 1
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Demo 3: plot overlay

10K samples of 100 coin flips
10K samples from normal(size=10000)

goal: play with loc and scale arguments to normal until gray overlaps red

version 3



Outline

choice()


pseudorandom: debugging/seeding


visualization: bar plots vs. histograms


normal()


statistical significance: an intuitive approach



Is this coin biased?

51 49

Call shenanigans?

whoever has the coin cheated 
(it's not 50/50 heads/tails)



Is this coin biased?

51 49 a statistician might say we're 
trying to decide if the evidence 

that the coin isn't fair is 
statistically significant

Call shenanigans?
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Is this coin biased?

51 49

Call shenanigans?    No.

5 95

Call shenanigans?  Yes. 

55 45

Call shenanigans?  No.

55 million 45 million

Call shenanigans?  Yes.

large skew is good evidence of shenanigans

small skew over large samples is good evidence
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Demo 4: Calling Shenanigans

60 40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice

2. count heads

3. repeat above 10K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

we got 10 more heads than we expect on average
how common is this?

11 more 12 less



Demo 5: Do front-row students score better?

df = pd.read_csv("scores.csv") df.mean(axis=1)

what are the odds that the front 
row would do so well by chance?


