
[301] Randomness
Tyler Caraza-Harter

Announcement 1: Recommended popular
stats books (for winter-break reading)

How to Measure Anything
by Douglas W. Hubbard

Thinking, Fast and Slow
by Daniel Kahneman

Statistics Done Wrong
by Alex Reinhart

The Signal and the Noise
by Nate Silver

Announcement 2: Course Evaluations

Section 1:
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580893

Section 2:
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580894

Evaluations are important generally, 
but especially this semester
• my first time teaching CS 301

• we made major changes to CS 301 this semester

• I promise to read every evaluation after the semester ends

https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580893
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580894

Announcement 3: Final Exam Prep
Details: similar to midterms
• worth 20%

• 2 hours on Dec 19th at 7:45am (in the morning!)

• you can have a single page of notes (both sides), as usual

• we'll use any extra time this Wed to review

• cumulative, across whole semester

• topics NOT included on the exam: beautifulsoup, regression, randomness

Recommended prep
• make sure you understand all the worksheet problems

• review the readings, especially anything I took the time to write myself

• review everything you got wrong on the midterms

• review the slides

• review the code you wrote for the projects

Comments on old finals
• we'll post them, because people ask for them

• content has evolved a lot in the last 3rd of CS 301, 

so they're not great review material

Which series was randomly generated?
Which did I pick by hand?

Why Randomize?

Why Randomize?

Games

Why Randomize?

Games

Security

Why Randomize?

Games

Security

Simulation

Why Randomize?

Games

Security

Simulation our focus

Outline

choice()

pseudorandom: debugging/seeding

visualization: bar plots vs. histograms

normal()

statistical significance: an intuitive approach

New Functions Today

Previous (from random module that comes w/ Python):

• choice, choices, randint

New Functions Today

Previous (from random module that comes w/ Python):

• choice, choices, randint

numpy.random:

• powerful collection of functions

• today: choice, normal

powerful collection of functions

New Functions Today

Previous (from random module that comes w/ Python):

• choice, choices, randint

numpy.random:

• powerful collection of functions

• today: choice, normal

Series.line.hist:

• similar to bar plot

• visualize spread of 

random results powerful collection of functions

New Functions Today

Previous (from random module that comes w/ Python):

• choice, choices, randint

numpy.random:

• powerful collection of functions

• today: choice, normal

Series.line.hist:

• similar to bar plot

• visualize spread of 

random results powerful collection of functions

choice
from numpy.random import choice, normal

choice
from numpy.random import choice, normal

result = choice()

list of things to
randomly choose from

choice
from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])

list of things to
randomly choose from

choice
from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

scissors

Output:

choice
from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

result = choice(["rock", "paper", "scissors"])
print(result)

scissors
rock

Output:

choice
from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

result = choice(["rock", "paper", "scissors"])
print(result)

scissors
rock

Output:

each time choice is
called, a value is randomly

selected (will vary run to run)

choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"])

for simulation, we'll often want
to compute many random results

choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

for simulation, we'll often want
to compute many random results

choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items

choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

choice(["rock", "paper", "scissors"], size=(3,2))

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items

choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

choice(["rock", "paper", "scissors"], size=(3,2))

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items

numpy shape tuple

choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

choice(["rock", "paper", "scissors"], size=(3,2))

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items

array([['rock', 'scissors'],
 ['paper', 'rock'],
 ['scissors', 'paper']], dtype='<U8')

choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

choice(["rock", "paper", "scissors"], size=(3,2))

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items

array([['rock', 'scissors'],
 ['paper', 'rock'],
 ['scissors', 'paper']], dtype='<U8')

???-dimensional ndarray with ??? items

choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

choice(["rock", "paper", "scissors"], size=(3,2))

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

1-dimensional ndarray with 5 items

array([['rock', 'scissors'],
 ['paper', 'rock'],
 ['scissors', 'paper']], dtype='<U8')

2-dimensional ndarray with 6 items

Random values and Pandas
from numpy.random import choice, normal

random Series
choice(["rock", "paper", "scissors"], size=5)

Random values and Pandas
from numpy.random import choice, normal

random Series
 choice(["rock", "paper", "scissors"], size=5)

Random values and Pandas
from numpy.random import choice, normal

random Series
Series(choice(["rock", "paper", "scissors"], size=5))

Random values and Pandas
from numpy.random import choice, normal

random Series
Series(choice(["rock", "paper", "scissors"], size=5))

0 paper
1 scissors
2 paper
3 rock
4 rock
dtype: object

Random values and Pandas
from numpy.random import choice, normal

random Series
Series(choice(["rock", "paper", "scissors"], size=5))

random DataFrame
DataFrame(choice(["rock", "paper", "scissors"], size=(5,3)))

0 paper
1 scissors
2 paper
3 rock
4 rock
dtype: object

Demo 1: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Demo 1: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Demo 1: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Question 2: how can we make it biased (if we want it to be)?

Random Strings vs. Random Ints
from numpy.random import choice, normal

random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])

Random Strings vs. Random Ints
from numpy.random import choice, normal

random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])

random int: 0, 1, or 2
choice([0, 1, 2])

Random Strings vs. Random Ints
from numpy.random import choice, normal

random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])

random int: 0, 1, or 2
choice([0, 1, 2])

random int (approach 2): 0, 1, or 2
choice(3)

same

Random Strings vs. Random Ints
from numpy.random import choice, normal

random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])

random int: 0, 1, or 2
choice([0, 1, 2])

random int (approach 2): 0, 1, or 2
choice(3)

random non-negative int

that is less than 3

same

Outline

choice()

pseudorandom: debugging/seeding

visualization: bar plots vs. histograms

normal()

statistical significance: an intuitive approach

Example: change over time

s = Series(choice(10, size=5))

Example: change over time

s = Series(choice(10, size=5))

s.plot.line()

Example: change over time

s = Series(choice(10, size=5))

s.plot.line()

percents = []
for i in range(1, len(s)):
 diff = 100 * (s[i] / s[i-1] - 1)
 percents.append(diff)

what are we computing for diff?

Example: change over time

s = Series(choice(10, size=5))

s.plot.line()

percents = []
for i in range(1, len(s)):
 diff = 100 * (s[i] / s[i-1] - 1)
 percents.append(diff)
Series(percents).plot.line()

Example: change over time

s = Series(choice(10, size=5))

s.plot.line()

percents = []
for i in range(1, len(s)):
 diff = 100 * (s[i] / s[i-1] - 1)
 percents.append(diff)
Series(percents).plot.line()

can you identify the bug in the code?

Example: change over time

s = Series(choice(10, size=5))

s.plot.line()

percents = []
for i in range(1, len(s)):
 diff = 100 * (s[i] / s[i-1] - 1)
 percents.append(diff)
Series(percents).plot.line()

can you identify the bug in the code?

Reproducibility

some bugs are easier to debug than others

• syntax or runtime errors easier than semantic bugs

• small inputs are easier than big inputs

a bug is reproducible if it shows up every time you run the
program with the same inputs

Reproducibility

some bugs are easier to debug than others

• syntax or runtime errors easier than semantic bugs

• small inputs are easier than big inputs

a bug is reproducible if it shows up every time you run the
program with the same inputs

who had a non-reproducible bug for a project this semester?

Reproducibility

some bugs are easier to debug than others

• syntax or runtime errors easier than semantic bugs

• small inputs are easier than big inputs

a bug is reproducible if it shows up every time you run the
program with the same inputs

who had a non-reproducible bug for a project this semester?

non-reproducible bugs

• are hard to fix

• common with programs based on randomness

Reproducibility

some bugs are easier to debug than others

• syntax or runtime errors easier than semantic bugs

• small inputs are easier than big inputs

a bug is reproducible if it shows up every time you run the
program with the same inputs

who had a non-reproducible bug for a project this semester?

non-reproducible bugs

• are hard to fix

• common with programs based on randomness

fortunately, the random values we've been generating are
not really, truly random. They're merely pseudorandom.

Pseudorandom

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

Pseudorandom

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

Pseudorandom
684, 559, 629, 192, 835, ...

37, 235, 908, 72, 767, ...

168, 527, 493, 584, 534, ...

874, 664, 249, 643, 952, ...

122, 174, 439, 709, 897, ...

867, 206, 701, 998, 118, ...

906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

Pseudorandom
684, 559, 629, 192, 835, ...

37, 235, 908, 72, 767, ...

168, 527, 493, 584, 534, ...

874, 664, 249, 643, 952, ...

122, 174, 439, 709, 897, ...

867, 206, 701, 998, 118, ...

906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

Pseudorandom
684, 559, 629, 192, 835, ...

37, 235, 908, 72, 767, ...

168, 527, 493, 584, 534, ...

874, 664, 249, 643, 952, ...

122, 174, 439, 709, 897, ...

867, 206, 701, 998, 118, ...

906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

Pseudorandom
684, 559, 629, 192, 835, ...

37, 235, 908, 72, 767, ...

168, 527, 493, 584, 534, ...

874, 664, 249, 643, 952, ...

122, 174, 439, 709, 897, ...

867, 206, 701, 998, 118, ...

906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

Pseudorandom
684, 559, 629, 192, 835, ...

37, 235, 908, 72, 767, ...

168, 527, 493, 584, 534, ...

874, 664, 249, 643, 952, ...

122, 174, 439, 709, 897, ...

867, 206, 701, 998, 118, ...

906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

restart!

Pseudorandom
684, 559, 629, 192, 835, ...

37, 235, 908, 72, 767, ...

168, 527, 493, 584, 534, ...

874, 664, 249, 643, 952, ...

122, 174, 439, 709, 897, ...

867, 206, 701, 998, 118, ...

906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

Pseudorandom
684, 559, 629, 192, 835, ...

37, 235, 908, 72, 767, ...

168, 527, 493, 584, 534, ...

874, 664, 249, 643, 952, ...

122, 174, 439, 709, 897, ...

867, 206, 701, 998, 118, ...

906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

Pseudorandom
684, 559, 629, 192, 835, ...

37, 235, 908, 72, 767, ...

168, 527, 493, 584, 534, ...

874, 664, 249, 643, 952, ...

122, 174, 439, 709, 897, ...

867, 206, 701, 998, 118, ...

906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

Pseudorandom
684, 559, 629, 192, 835, ...

37, 235, 908, 72, 767, ...

168, 527, 493, 584, 534, ...

874, 664, 249, 643, 952, ...

122, 174, 439, 709, 897, ...

867, 206, 701, 998, 118, ...

906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

Pseudorandom
684, 559, 629, 192, 835, ...

37, 235, 908, 72, 767, ...

168, 527, 493, 584, 534, ...

874, 664, 249, 643, 952, ...

122, 174, 439, 709, 897, ...

867, 206, 701, 998, 118, ...

906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

Pseudorandom
0: 684, 559, 629, 192, 835, ...

1: 37, 235, 908, 72, 767, ...

2: 168, 527, 493, 584, 534, ...

3: 874, 664, 249, 643, 952, ...

4: 122, 174, 439, 709, 897, ...

5: 867, 206, 701, 998, 118, ...

6: 906, 713, 227, 980, 618, ...
... billions more ...

pseudorandom generators

• can generate billions of different

seemingly random sequences

• subsequent calls to choice progress

along a sequence

• every program run starts with a

different sequence

• we can choose our sequence

seed

Seeding
from numpy.random import choice, normal
import numpy as np

np.random.seed(1)
choice(10, size=5) array([5, 8, 9, 5, 0])

Seeding
from numpy.random import choice, normal
import numpy as np

np.random.seed(1)
choice(10, size=5)

np.random.seed(2)
choice(10, size=5)

array([5, 8, 9, 5, 0])

array([8, 8, 6, 2, 8])

Seeding
from numpy.random import choice, normal
import numpy as np

np.random.seed(1)
choice(10, size=5)

np.random.seed(2)
choice(10, size=5)

np.random.seed(1)
choice(10, size=5)

array([5, 8, 9, 5, 0])

array([5, 8, 9, 5, 0])

array([8, 8, 6, 2, 8])

Seeding
from numpy.random import choice, normal
import numpy as np

np.random.seed(1)
choice(10, size=5)

np.random.seed(2)
choice(10, size=5)

np.random.seed(1)
choice(10, size=5)

array([5, 8, 9, 5, 0])

array([5, 8, 9, 5, 0])

array([8, 8, 6, 2, 8])

Seeding
from numpy.random import choice, normal
import numpy as np

np.random.seed(1)
choice(10, size=5)

np.random.seed(2)
choice(10, size=5)

np.random.seed(1)
choice(10, size=5)

array([5, 8, 9, 5, 0])

array([5, 8, 9, 5, 0])

array([8, 8, 6, 2, 8])

Debug tip: if you have a bug related to randomness, find a seed that

causes the bug to arise, then use that seed until you find the problem.

(don't forget to remove it when you're done!)

Outline

choice()

pseudorandom: debugging/seeding

visualization: bar plots vs. histograms

normal()

statistical significance: an intuitive approach

Frequencies across categories

s = Series(["rock", "rock", "paper",  
 "scissors", "scissors", "scissors"])

s.value_counts().plot.bar()

bars are a good way to view frequencies across categories

Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().plot.bar()

bars are a bad way to view frequencies across numbers

numbers not ordered

Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().sort_index().plot.bar()

bars are a bad way to view frequencies across numbers

gap between 1 and 8 not obvious

Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().sort_index().plot.bar()  
s.plot.hist()

bars are a bad way to view frequencies across numbers

Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().sort_index().plot.bar()  
s.plot.hist()

histograms are a good way to view frequencies across numbers

this kind of plot is called a histogram

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist()

a histogram "bins" nearby numbers to create discrete bars

histograms are a good way to view frequencies across numbers

both 0 and 0.1

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=10)

we can control the number of bins

histograms are a good way to view frequencies across numbers

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=3)

too few bins provides too little detail

histograms are a good way to view frequencies across numbers

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=100)

too many bins provides too much detail (equally bad)

histograms are a good way to view frequencies across numbers

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=10)

numpy chooses the default bin boundaries

histograms are a good way to view frequencies across numbers

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=[0,1,2,3,4,5,6,7,8,9,10])

we can override the defaults

histograms are a good way to view frequencies across numbers

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=range(11))

this is easily done with range

histograms are a good way to view frequencies across numbers

Demo 2: coin flips

If we flip 10 coins repeatedly, we'll get varying numbers of heads

6 heads

Demo 2: coin flips

If we flip 10 coins repeatedly, we'll get varying numbers of heads

6 heads

If we flip 100 coins, 10K times, how often do we get each head count?

number of samples

sample size

Demo 2: result

number of heads (out of 100)

Demo 2: result

number of heads (out of 100)

this shape resembles what we often call
a normal distribution or a "bell curve"

Demo 2: result

number of heads (out of 100)

this shape resembles what we often call
a normal distribution or a "bell curve"

in general, if we take large samples enough
times, the results will look like this 
(we won't discuss exceptions here)

Demo 2: result

number of heads (out of 100)

this shape resembles what we often call
a normal distribution or a "bell curve"

in general, if we take large samples enough
times, the results will look like this 
(we won't discuss exceptions here)

numpy can directly

generate random

numbers fitting a

normal distribution

Outline

choice()

pseudorandom: debugging/seeding

visualization: bar plots vs. histograms

normal()

statistical significance: an intuitive approach

normal
from numpy.random import choice, normal
import numpy as np

for i in range(10):
 print(normal())

normal
from numpy.random import choice, normal
import numpy as np

for i in range(10):
 print(normal())

-0.18638553993371157
0.02888452916769247
1.2474561113726423
-0.5388224399358179
-0.45143322136388525
-1.4001861112018241
0.28119371511868047
0.2608861898556597
-0.19246288728955144
0.2979572961710292

Output:

average is 0 (over many calls)

numbers closer to 0 more likely

-x just as likely as x

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist()

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist()

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100)

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc= , scale=)

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc= , scale=)

try plugging in different values

(defaults are 0 and 1, respectively)

Demo 3: plot overlay

Demo 3: plot overlay

10K samples of 100 coin flips
10K samples from normal(size=10000)

Demo 3: plot overlay

10K samples of 100 coin flips
10K samples from normal(size=10000)

goal: play with loc and scale arguments to normal until gray overlaps red

version 1

Demo 3: plot overlay

10K samples of 100 coin flips
10K samples from normal(size=10000)

goal: play with loc and scale arguments to normal until gray overlaps red

version 2

Demo 3: plot overlay

10K samples of 100 coin flips
10K samples from normal(size=10000)

goal: play with loc and scale arguments to normal until gray overlaps red

version 3

Outline

choice()

pseudorandom: debugging/seeding

visualization: bar plots vs. histograms

normal()

statistical significance: an intuitive approach

Is this coin biased?

51 49

Call shenanigans?

whoever has the coin cheated
(it's not 50/50 heads/tails)

Is this coin biased?

51 49 a statistician might say we're
trying to decide if the evidence

that the coin isn't fair is
statistically significant

Call shenanigans?

whoever has the coin cheated
(it's not 50/50 heads/tails)

Is this coin biased?

51 49

Call shenanigans? No.

Is this coin biased?

51 49

Call shenanigans? No.

5 95

Call shenanigans?

Is this coin biased?

51 49

Call shenanigans? No.

5 95

Call shenanigans? Yes.

Is this coin biased?

51 49

Call shenanigans? No.

5 95

Call shenanigans? Yes.

Note: there is a non-zero probability that a
fair coin will do this, but the odds are slim

Is this coin biased?

51 49

Call shenanigans? No.

5 95

Call shenanigans? Yes.

55 45

Call shenanigans?

55 million 45 million

Call shenanigans?

Is this coin biased?

51 49

Call shenanigans? No.

5 95

Call shenanigans? Yes.

55 45

Call shenanigans? No.

55 million 45 million

Call shenanigans? Yes.

Is this coin biased?

51 49

Call shenanigans? No.

5 95

Call shenanigans? Yes.

55 45

Call shenanigans? No.

55 million 45 million

Call shenanigans? Yes.

large skew is good evidence of shenanigans

small skew over large samples is good evidence

Demo 4: Calling Shenanigans

60 40

Call shenanigans?

Demo 4: Calling Shenanigans

60 40

Call shenanigans?

Strategy: simulate a fair coin

Demo 4: Calling Shenanigans

60 40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice

2. count heads

3. repeat above 10K times

Demo 4: Calling Shenanigans

60 40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice

2. count heads

3. repeat above 10K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

Demo 4: Calling Shenanigans

60 40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice

2. count heads

3. repeat above 10K times

we got 10 more heads than we expect on average

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

Demo 4: Calling Shenanigans

60 40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice

2. count heads

3. repeat above 10K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

we got 10 more heads than we expect on average
how common is this?

Demo 4: Calling Shenanigans

60 40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice

2. count heads

3. repeat above 10K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

we got 10 more heads than we expect on average
how common is this?

11 more 12 less

Demo 5: Do front-row students score better?

df = pd.read_csv("scores.csv") df.mean(axis=1)

what are the odds that the front
row would do so well by chance?

