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Announcement 1: Recommended popular
stats books (for winter-break reading)

THINKING,
FAST .. SLOW

DANIEL
KAHNEMAN

Thinking, Fast and Slow
by Daniel Kahneman

MORE THAN 50,000 COPIES SULD-“NOW WITH NEW MATERIAL

DOUCLAS W. HUBBARD J

HOW TO -
MEASURE g& |
ANYTHING _ -
Finding the Value of % ,t*\s

SINTANGIBLES” = (-0~ .Y
in Business —RR

How to Measure Anything

by Douglas W. Hubbard

new york times bestseller

the signal
and the noise

why so many
predictions fail -
but some don’t

nate silver
e . O

The Signal and the Noise
by Nate Silver

STATISTICS
DONE WRONG

Statistics Done Wrong
by Alex Reinhart



Announcement 2: Course Evaluations

Section 1:

https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580893

Section 2:

https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580894

Evaluations are important generally,

but especially this semester
- my first time teaching CS 301
- we made major changes to CS 301 this semester


https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580893
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=580894

Announcement 3: Final Exam Prep

Details: similar to midterms
« worth 20%
« 2 hours on (in the morning!)
 you can have a single page of notes (both sides), as usual
- we'll use any extra time this Wed to review
- cumulative, across whole semester
« topics NOT included on the exam: beautifulsoup, regression, randomness

Recommended prep

- make sure you understand all the problems

* review the , especially anything | took the time to write myself
* review everything you got wrong on the

* review the

* review the code you wrote for the

Comments on old finals
- we'll post them, because people ask for them
« content has evolved a lot in the last 3rd of CS 301,
so they're not great review material
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Outline

choice()

pseudorandom: debugging/seeding
visualization: bar plots vs. histograms
normail()

statistical significance: an intuitive approach
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e choice, choices,

numpy.random:

 powerful collection of functions
e today: choice, normal

randint

Simple random data

rand(do, d1, ..., dn)
randn(do, d1, ..., dn)

randint(low[, high, size, dtype])
random_integers(low[, high, size])

randnam camnlaffcizall

Distributions
beta(a, b, size])

binomial(n, p[, size])
chisquare(dff, size])

dirichlet(alphal, size])
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Random sampling (hnumpy.random) Table Of Contents

e Random sampling
(numpy.random)
o Simple random
Random values in a given shape. L
Return a sample (or samples) from the “standard ° Permutations
normal” distribution.

Return random integers from /ow (inclusive) to

generator
high (exclusive).
Random integers of type np.int between /ow and Previous topic
high, inclusive. numpy.RankWarning

Ratiirn randam flaatc in tha halfoanan intarnsal

powerful collection of functions

Draw samples from a Beta
distribution.

Draw samples from a binomial
distribution.

Draw samples from a chi-square
distribution.

Draw samples from the Dirichlet
distribution.
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from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

Output:

scissors
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from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

result = choice(["rock", "paper", "scissors"])
print(result) Output:

scissors
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choice

from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

result = choice(["rock", "paper", "scissors"])
print(result) Output:

scissors

/p rock

each time choice is
called, a value is randomly
selected (will vary run to run)
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from numpy.random import choice, normal

choice(["rock", "paper", "scissors'"], )

*
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*
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choice

from numpy.random import choice, normal

choice(["rock", "paper", "scissors'"], )

*

arrayé['rock', 'scissors’', 'paper', 'rock’, 'paper']} dtype='<U8")

*
.
......................................................................................................................................................

1-dimensional ndarray with 5 items

choice(["rock", "paper", "scissors'], )

\ 4

array([[ 'rock', 'scissors'],
[ 'paper', 'rock'],
[ 'scissors', 'paper']], dtype='<U8')




choice

from numpy.random import choice, normal

choice(["rock", "paper", "scissors'"], )

*

arrayé['rock', 'scissors’', 'paper', 'rock’, 'paper']} dtype='<U8")

*
.
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1-dimensional ndarray with 5 items

choice(["rock", "paper", "scissors'], )

\ 4

array([[ 'rock', 'scissors'],
[ 'paper', 'rock'],
[ 'scissors', 'paper']], dtype='<U8')

???-dimensional ndarray with ??? items



choice

from numpy.random import choice, normal

choice(["rock", "paper", "scissors'"], )

*

arrayé['rock', 'scissors’', 'paper', 'rock’, 'paper']} dtype='<U8")

*
.
......................................................................................................................................................

1-dimensional ndarray with 5 items

choice(["rock", "paper", "scissors'], )

\ 4

array([[ 'rock', 'scissors'],
[ 'paper', 'rock'],
[ 'scissors', 'paper']], dtype='<U8')

2-dimensional ndarray with 6 items



Random values and Pandas

from numpy.random import choice, normal

# random Series
Choice([llrock", |lpaper||, ||Scissorsll],
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from numpy.random import choice, normal

# random Series
Choice([llrockll, ||paperll, "SCissorS"],
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from numpy.random import choice, normal

# random Series
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Random values and Pandas

from numpy.random import choice, normal

# random Series
Series(choice(["rock",

0 paper
1 scissors
2 paper
3 rock
4 rock
dtype: object

Ilpaperll ,

"scissors'"],



Random values and Pandas

from numpy.random import choice, normal

# random Series
Series(choice(["rock", "paper", "scissors"],

0 paper
1 scissors
2 paper
3 rock
4 rock
dtype: object

# random DataFrame
DataFrame(choice(["rock", "paper", "scissors"],

0 1 2

0 SCiSSOrs Scissors scissors

1 Scissors scissors rock
2 rock scissors rock
3 scissors scissors rock

4 paper rock rock

))



Demo 1: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?
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Demo 1: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Question 2: how can we make it biased (if we want it to be)?

80 -

60 -

40 1

20 -

o
paper i

rock -

SCISSOrs !
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from numpy.random import choice, normal

# : rock, paper, or scissors
choice(["rock", "paper", "scissors'])
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Random Strings vs. Random Ints

from numpy.random import choice, normal

# : rock, paper, or scissors
choice(["rock", "paper", "scissors'])

# : 0, 1, or 2
choice ([0, 1, 2])

# : 0, 1, or 2
choice(3)



Random Strings vs. Random Ints

from numpy.random import choice, normal

# : rock, paper, or scissors
choice(["rock", "paper", "scissors'])

# : 0, 1, or 2
choice ([0, 1, 2])

# : 0, 1, or 2
choice(3)

ﬁ\\\\“ random non-negative int

that is less than 3
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statistical significance: an intuitive approach
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s = Series(choice(10, size=5))
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Example: change over time

s = Series(choice(10, size=5)) Ly
6- /

0 6

1 3

2 7 4 -

3 3 |

4 1

dtype: inté64 27

s.plot.line() ' 5 ] 3 3 ]




Example: change over time

s = Series(choice(10, size=5)) "
6-//////

0 6
1 >
2 7 4
3 3 3 1
4 1
dtype: inté64 2

[ 1-
s.plot.line() 0 1
percents = []

for 1 in range(l, len(s)):
diff = 100 * (s[i] / s[i-1] - 1)
percents.append(diff)

what are we computing for diff?



Example: change over time

s = Series(choice(10, size=5))

|

6

OB WN R~ O
W~

type: inté64

= N W s O

s.plot.line() 5 1 3 3 A

20 -
percents = []
for i in range(l, len(s)): 01
diff = 100 * (s[i] / s[i-1] - 1) _,,
percents.append(diff)
Series(percents).plot.line() —40 -
-60

00 05 10 15 2.0



Example: change over time

s = Series(choice(10, size=5))

|

6

Q. & W N = O
=W d

type: inté64

= N W s O

s.plot.line() 0 1 3 3 A

percents = []
for 1 in range(l, len(s)):
diff = 100 * (s[i] / s[i-1] - 1)

~20

percents.append(diff)
Series(percents).plot.line() -40 ]
~60

can you identify the bug in the code? 00 05 10 15 20



Example: change over time

s = Series(choice(10, size=5))

|

= W NN = O
=W d

dtype: inté64

- N W s U O~

s.plot.line() 5 1 3 3 A

/anaconda3/lib/python3.6/site-packages/ipykernel launcher.py:14:
RuntimeWarning: divide by zero encountered in long scalars

percents = []
for i in range(l, len(s)): 01
diff = 100 * (s[i] / s[i-1] - 1) _,,.
percents.append(diff)
Series(percents).plot.line() —40 -
—60 1

can you identify the bug in the code? 00 05 10 15 20
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Reproducibility

some bugs are easier to debug than others
e syntax or runtime errors easier than semantic bugs
e small inputs are easier than big inputs

a bugis If it shows up every time you run the
program with the same inputs

who had a non-reproducible bug for a project this semester?

non-reproducible bugs
e are hard to fix
e common with programs based on randomness

fortunately, the random values we've been generating are
not really, truly random. They're merely
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Pseudorandom

o)

684, 559, 629, 192, 835,
37, 235, 908, 72, 767,

168, 527, 493, 584, 534,
874, 6604, 249, 643, 952,
122, 174, 439, 709, 897,
867, 206, 701, 998, 118,
906, 713, 227, 980, 618,

... billions more ...

Ui & W N =

(o))

seed pseudorandom generators

- can generate billions of different

 subsequent calls to choice progress
along a sequence

* every program run starts with a
different sequence

C- we can choose our sequence )
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import numpy as np

np.random.
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Seeding

from numpy.random import choice, normal
import numpy as np

np.random.
choice (10, size=5)

np.random. » array([8, 8, 6, 2, 8])

choice (10, size=5)

array([5, 8, 9, 5, 0])




Seeding

from numpy.random import choice, normal
import numpy as np

np.random.
choice (10, size=5) array([5, 8, 9, 5, 01])
np.random.

choice (10, size=5)

array([8, 8, 6, 2, 8])

np.random.

5! 8[ 9, 5, O
choice (10, size=5) array (| 1)




Seeding

from numpy.random import choice, normal
import numpy as np

np.random.
choice (10, size=5) array([>, 8, 9,
np.random.

choice (10, size=5)

array([38, 8, 6,

np.random.
choice(10, size=5)




Seeding

from numpy.random import choice, normal
import numpy as np

np.random.
choice (10, size=5) array([5, 8, 9, 5, 01)
np.random.

choice (10, size=5)

array([8, 8, 6, 2, 8])

np.random.
choice (10, size=5)

Debug tip: if you have a bug related to randomness, find a seed that
causes the bug to arise, then use that seed until you find the problem.
(don't forget to remove it when you're done!)



Outline
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pseudorandom: debugging/seeding
visualization: bar plots vs. histograms
normail()

statistical significance: an intuitive approach



Frequencies across categories

bars are a good way to view frequencies across categories

s = Series(["rock", "rock", "paper',
"scissors", "scissors', "scissors'"])

s.value counts().plot.bar()
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Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9])

s.value counts().plot.bar()
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numbers not ordered



Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9])

s.value counts().sort index().plot.bar()

2.0 -

1.5

1.0 1

0.5

0.0

o — 0 (&)

gap between 1 and 8 not obvious



Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9])

s—valtue—counts{}-sort—index{}-plot-bar{y
s.plot.hist()

0 2 4 6 8
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Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9])

s.plot.hist()

0.0 L : : , ‘
0 2 4 6 8

this kind of plot is called a histogram
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Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, O, 1, 8, 9, 9.2]7)

i_

a histogram "bins" nearby numbers to create discrete bars

s.plot.Hist()
both 0 and 0.1

Frequency
b b N
o wun o

o
wn
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Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist( )

0.0 L : : , ‘
0 2 4 6 8

we can control the number of bins

Frequency
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Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist(bins=3)
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too few bins provides too little detail




Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist( )
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Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist( )
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numpy chooses the default bin boundaries
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Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s+—vatue—counts{)-soert—index{)-pltot-bar{)

s.plot.Hist( )
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we can override the defaults
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Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist( )
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this is easily done with range
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Demo 2: coin flips

If we flip 10 coins repeatedly, we'll get varying numbers of heads

6 heads




Demo 2: coin flips

If we flip 10 coins repeatedly, we'll get varying numbers of heads

6 heads

If we flip 100 coins, 10K times, how often do we get each head count?

& number of samples

sample size



Demo 2: result
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iIn general, if we take large samples enough
times, the results will look like this
(we won't discuss exceptions here)



Demo 2: result
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0 20 40 60 80 100
number of heads (out of 100)
numpy can directly
generate random this shape resembles what we often call

numbers fitting a a@ormal distributio@or a "bell curve"

normal distribution
iIn general, if we take large samples enough
times, the results will look like this
(we won't discuss exceptions here)




Outline

choice()

pseudorandom: debugging/seeding
visualization: bar plots vs. histograms
normail()

statistical significance: an intuitive approach



normal

from numpy.random import choice, normal
import numpy as np

for 1 in range(10):
print(normal())



normal

from numpy.random import choice, normal
import numpy as np

for 1 in range(10):
print(normal()) Output:

-0.18638553993371157
0.02888452916769247
1.2474561113726423
average is 0 (over many calls) —0.5388224399358179
-0.45143322136388525
-1.4001861112018241
0.28119371511868047
0.2608861898556597
-0.19246288728955144
0.2979572961710292

numbers closer to 0 more likely

-X just as likely as x




normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))



normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist ()



normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist ()
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normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100)




normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc=®, scale=C))




normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc=®, scale=C))

try plugging in different values
(defaults are 0 and 1, respectively)
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Demo 3: plot overlay

3000 -

N
-
-
o

Frequency

1000 -

N

20 40 60 80 100

0
X L 10K samples of 100 coin flips

10K samples from normal(size=10000)




Demo 3: plot overlay
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Demo 3: plot overlay
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Demo 3: plot overlay
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10K samples from normal(size=10000)

goal: play with 1loc and scale arguments to normal until gray overlaps red



Outline

choice()

pseudorandom: debugging/seeding
visualization: bar plots vs. histograms
normail()

statistical significance: an intuitive approach



Is this coin biased?

Call shenanigans?

whoever has the coin cheated
(it's not 50/50 heads/tails)



Is this coin biased?

Call shenanigans?

a statistician might say we're
trying to decide if the evidence
that the coin isn't fair is

whoever has the coin cheated
(it's not 50/50 heads/tails)



Is this coin biased?

Call shenanigans? No.
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Is this coin biased?

Call shenanigans? No.
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Is this coin biased?

Call shenanigans? No.

Call shenanigans? Yes.

Note: there is a non-zero probability that a
fair coin will do this, but the odds are slim
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Call shenanigans? No.

Call shenanigans? Yes.

55 million 45 million



Is this coin biased?

Call shenanigans? No.

(55 million 45 miIIion) small skew over large samples is good evidence
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3. repeat above 10K times
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Call shenanigans?

60 40
we got 10 more heads than we expect on average

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10K times
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Demo 4: Calling Shenanigans

Call shenanigans?

60 40

we got 10 more heads than we expect on average
how common is this?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]



Demo 4: Calling Shenanigans

Call shenanigans?

60 40

we got 10 more heads than we expect on average
how common is this?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10K times

(50,(61,)51, 44, 39, 43, 51, 49, 49,(38,) ...]

11 more 12 less



Demo 5: Do front-row students score better?

df = pd.read_csv("scores.csv") df.mean(axis=1)

0 1 2 3 4 5 6 7 8 9 (0 90.4 )

o 84 90 8 89 90 87 8 100 96 94 i 871

2 84.5
1 100 89 89 87 72 88 72 98 94 82 3 86.2
2 8 82 83 84 73 8 76 94 87 96 4 83.3

5 82.0
3 74 87 8 89 97 91 8 80 91 87 6 80.7
4 98 76 78 77 91 88 78 100 77 70 7 83.4
5 82 72 73 84 98 70 94 91 73 83 6 83.8

9 87.3
6 70 100 94 76 71 75 71 77 100 73 dtype: float64
7 89 77 83 71 95 89 77 92 91 70
8 100 84 82 79 70 88 98 77 81 79

what are the odds that the front

9 99 88 89 92 84 82 94 93 77 75

row would do so well by chance?



