
[301] Tuples
Tyler Caraza-Harter

Today's Outline

New Types

• tuple
• namedtuple

• recordclass

Tuple Type

nums_list = [200, 100, 300]  
nums_tuple = (200, 100, 300)

if you use parentheses (round)

instead of brackets [square]

you get a tuple instead of a list

Tuple Type

nums_list = [200, 100, 300]  
nums_tuple = (200, 100, 300)

if you use parentheses (round)

instead of brackets [square]

you get a tuple instead of a list

What is a tuple?

Tuple Type

nums_list = [200, 100, 300]  
nums_tuple = (200, 100, 300)

 
Like a list

• for loop, indexing, slicing, other methods

Unlike a list:

• immutable (like a string)

Tuple Type

nums_list = [200, 100, 300]  
nums_tuple = (200, 100, 300)

print(nums_list[2])  
print(nums_tuple[2])

 
Like a list

• for loop, indexing, slicing, other methods

Unlike a list:

• immutable (like a string)

Tuple Type

nums_list = [200, 100, 300]  
nums_tuple = (200, 100, 300)

print(nums_list[2])  
print(nums_tuple[2])

 
Like a list

• for loop, indexing, slicing, other methods

Unlike a list:

• immutable (like a string)

both of these print 300

Tuple Type

nums_list = [200, 100, 300]  
nums_tuple = (200, 100, 300)

nums_list[0] = 22  
nums_tuple[0] = 22

 
Like a list

• for loop, indexing, slicing, other methods

Unlike a list:

• immutable (like a string)

Tuple Type

nums_list = [200, 100, 300]  
nums_tuple = (200, 100, 300)

nums_list[0] = 22  
nums_tuple[0] = 22

 
Like a list

• for loop, indexing, slicing, other methods

Unlike a list:

• immutable (like a string)

changes list to
[22, 100, 300]

Tuple Type

nums_list = [200, 100, 300]  
nums_tuple = (200, 100, 300)

nums_list[0] = 22  
nums_tuple[0] = 22

 
Like a list

• for loop, indexing, slicing, other methods

Unlike a list:

• immutable (like a string)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Crashes!

changes list to
[22, 100, 300]

Tuple Type

nums_list = [200, 100, 300]  
nums_tuple = (200, 100, 300)

nums_list[0] = 22  
nums_tuple[0] = 22

 
Like a list

• for loop, indexing, slicing, other methods

Unlike a list:

• immutable (like a string)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Crashes!

changes list to
[22, 100, 300]

Why would we ever want immutability?
1. avoid certain bugs

2. some use cases require it 

(e.g., dict keys)

Example: location -> building mapping

buildings = {  
 [0,0]: “Comp Sci”,  
 [0,2]: “Psychology”,  
 [4,0]: “Noland”,  
 [1,8]: “Van Vleck”  
}

Traceback (most recent call last):
 File "test2.py", line 1, in <module>
 buildings = {[0,0]: "CS"}
TypeError: unhashable type: 'list'

FAILS!

trying to use x,y coordinates as key

Example: location -> building mapping

buildings = {  
 (0,0): “Comp Sci”,  
 (0,2): “Psychology”,  
 (4,0): “Noland”,  
 (1,8): “Van Vleck”  
}

Succeeds!
(with tuples)

trying to use x,y coordinates as key

Today's Outline

New Types

• tuple

• namedtuple
• recordclass

Tuples, with and without names

pt1 = (50,60)
pt2 = (90,10)
distance = ((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2) ** 0.5

regular tuples (remember x then y)

pt1

pt2

Tuples, with and without names

pt1 = (50,60)
pt2 = (90,10)
distance = ((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2) ** 0.5

regular tuples (remember x then y)

pt1[0] is x

pt1

pt2

Tuples, with and without names

pt1 = (50,60)
pt2 = (90,10)
distance = ((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2) ** 0.5

regular tuples (remember x then y)

pt1[0] is x

from collections import namedtuple

need to import namedtuple

(not there by default)

Tuples, with and without names

pt1 = (50,60)
pt2 = (90,10)
distance = ((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2) ** 0.5

regular tuples (remember x then y)

pt1[0] is x

from collections import namedtuple

Point = namedtuple("Point", ["x", “y”])

Point is a

new type

“Point” is the

type’s name

A Point will

have an x and y

Tuples, with and without names

pt1 = (50,60)
pt2 = (90,10)
distance = ((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2) ** 0.5

regular tuples (remember x then y)

pt1[0] is x

from collections import namedtuple

Point = namedtuple("Point", ["x", “y”])

Point is a

new type

“Point” is the

type’s name

A Point will

have an x and y

>>> L = list()
>>> type(L)
<class 'list'> 

>>> type(list)
<class 'type'> 

>>> type(Point)
<class 'type'>

Tuples, with and without names

pt1 = (50,60)
pt2 = (90,10)
distance = ((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2) ** 0.5

regular tuples (remember x then y)

pt1[0] is x

from collections import namedtuple

Point = namedtuple("Point", ["x", “y”])

Point is a

new type

“Point” is the

type’s name

A Point will

have an x and y

>>> L = list()
>>> type(L)
<class 'list'> 

>>> type(list)
<class 'type'> 

>>> type(Point)
<class 'type'>

Point is a now a datatype, like a list or dict.

Just like dict(…) and list(…) create new instances,

Point(…) will create new instances

Tuples, with and without names

pt1 = (50,60)
pt2 = (90,10)
distance = ((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2) ** 0.5

regular tuples (remember x then y)

pt1[0] is x

from collections import namedtuple

Point = namedtuple("Point", ["x", "y"])

pt1 = Point(50,60)

x y

Tuples, with and without names

pt1 = (50,60)
pt2 = (90,10)
distance = ((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2) ** 0.5

regular tuples (remember x then y)

pt1[0] is x

from collections import namedtuple

Point = namedtuple("Point", ["x", "y"])

pt1 = Point(50,60)
pt2 = Point(x=90, y=10)

x y

Tuples, with and without names

pt1 = (50,60)
pt2 = (90,10)
distance = ((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2) ** 0.5

regular tuples (remember x then y)

pt1[0] is x

from collections import namedtuple

Point = namedtuple("Point", ["x", "y"])

pt1 = Point(50,60)
pt2 = Point(x=90, y=10)

distance = ((pt1.x - pt2.x)**2 + (pt1.y - pt2.y) ** 2) ** 0.5

don’t need to remember

anything (e.g., “x” is first)

Tuples, with and without names

pt1 = (50,60)
pt2 = (90,10)
distance = ((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2) ** 0.5

regular tuples (remember x then y)

pt1[0] is x

from collections import namedtuple

Point = namedtuple("Point", ["x", "y"])

pt1 = Point(50,60)
pt2 = Point(x=90, y=10)

distance = ((pt1.x - pt2.x)**2 + (pt1.y - pt2.y) ** 2) ** 0.5

>>> pt1.x = 3
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

note that namedtuples
are also immutable

Today's Outline

New Types

• tuple

• namedtuple

• recordclass

Today's Outline

New Types

• tuple

• namedtuple

• recordclass

References

• motivation

• unintentional argument modification

• “is” vs. “==”

mutable equivalent of a namedtuple

recordclass example

>>> from recordclass import recordclass

module is recordclass so is function

recordclass example

>>> from recordclass import recordclass
>>> Point = recordclass("Point", ["x", "y"])

Point = namedtuple(“Point", ["x", "y"])

recordclass example

>>> from recordclass import recordclass
>>> Point = recordclass("Point", ["x", "y"])
>>> pt1 = Point(0,0)
>>> pt1
Point(x=0, y=0)

recordclass example

>>> from recordclass import recordclass
>>> Point = recordclass("Point", ["x", "y"])
>>> pt1 = Point(0,0)
>>> pt1
Point(x=0, y=0)
>>> pt1.x = 5
>>> pt1.y = 6

mutations

recordclass example

>>> from recordclass import recordclass
>>> Point = recordclass("Point", ["x", "y"])
>>> pt1 = Point(0,0)
>>> pt1
Point(x=0, y=0)
>>> pt1.x = 5
>>> pt1.y = 6
>>> pt1
Point(x=5, y=6)

recordclass example

>>> from recordclass import recordclass
>>> Point = recordclass("Point", ["x", "y"])
>>> pt1 = Point(0,0)
>>> pt1
Point(x=0, y=0)
>>> pt1.x = 5
>>> pt1.y = 6
>>> pt1
Point(x=5, y=6)

Note: recordclass does not come with Python.

You must install it yourself.

Aside: installing packages

There are many Python packages available on PyPI

• https://pypi.org/

• short for Python Package Index

Installation example (from terminal):

pip install recordclass

Aside: installing packages

There are many Python packages available on PyPI

• https://pypi.org/

• short for Python Package Index

Installation example (from terminal):

pip install recordclass

Anaconda is just Python with a bunch of packages related to data
science and quantitative work pre-installed.

