
CS 300 for Pythonistas

Tyler Caraza-Harter and Gary Dahl

If you were introduced to programming in our CS department at UW-Madison,
you probably took one of two courses: a course in the Java programming lan-
guage numbered CS 200, or CS 301, a Python-based course with an emphasis
on working with real datasets. The course numbering is a bit misleading, as
CS 200 and CS 301 both provide an intro to programming for absolute be-
ginners (301 is not harder despite its bigger number).

The next logical course for a student to take after one of these intro courses
is CS 300 (another numbering surprise: 300 is actually more advanced than
301!). As it happens, students coming from CS 200 will have a slight advan-
tage because CS 300, like 200, is in Java. This document is for those of you
coming from CS 301 (or Pythonistas with an equivalent background).

Don’t let the switch to a new programming language intimidate you. The
fundamental programming logic you’ve learned will be the same (e.g., we’ll
still have types, expressions, functions, conditionals, and loops).

At the same time, there are many syntactic differences between the Python
and Java. We’ve talked a bit about what syntax means in CS 301, but
it’s difficult to truly understand the distinction between logic and syntax
until you’ve learned a second programming language. Once you have, you’ll
see many examples of how different syntax can be used to represent the
same logic. For example, the first line of a while loop in Python might look
something like this:

while i < 10:

In contrast, the first line of an equivalent loop in Java looks like this:

1

while (i < 10) {

Logically, these loops do the same thing: they keep executing until i is greater
than or equal to 10. But the syntax has two minor differences: in Java, the
boolean expression, i < 10, must be enclosed in parentheses (Python doesn’t
care). In Python, the loop is followed by a colon (“:”); in Java, by an opening
curly brace (“{“).

Relative to learning fundamental logic (e.g., how looping works in general),
learning new syntax is quite easy. Of course, you must take the time to learn
the syntax of Java. Until you do, programming logic that you would other-
wise be quite comfortable with will appear mysterious and confusing. That’s
where this document comes in: we’ll highlight the most striking differences
between Python and Java.

1 Java Boilerplate

Do you spend more time writing code or debugging? Every programmer we
know says the latter.

Now let’s say you’re working on a project, and you have the choice to spend
1 extra minute writing code to reduce the time you spend debugging by 2
minutes. Would you make that tradeoff? As it turns out, there are many
ways to make such investments. One we’ve seen in Python is the use of
assert. Here is an example:

def square area(side):
assert(side >= 0)
return side ∗∗ 2

The above assert isn’t part of the core logic of the function, but it might help
you more quickly catch a bug involving negative lengths.

As a language, Java often requires you to make such investments for your own
good. As a result, when writing equivalent programs in Python and Java,

2

the code of your Java program will often be much longer. This may appall
Pythonistas seeing Java code for the for the first time, but with experience,
you’ll come to see the merits and tradeoffs of the Java approach.

To illustrate some of the extra typing necessary, let’s consider the simplest
possible program: one that prints “Hello”. In Python, the program is just
one line:

print("Hello")

The equivalent Java program looks like this:

public class Main {
public static void main(String[] args) {

System.out.println("Hello");
}

}

Wow, there’s a lot going on here! But don’t feel overwhelmed, because you
don’t need to understand everything immediately. Also, with some strategic
copy/paste, you won’t need to type all of the above every time.

You may wish to keep around a file like the following, perhaps called Start.java:

public class Main {
public static void main(String[] args) {

// program l o g i c here !
}

}

Then, whenever you want to make a new program, you can copy Start.java

to a new file, then replace the // program logic here! part with the code
for your program. In Python, we start comments in our code with the #
symbol; in Java, we instead use two forward slashes instead of the pound sign:
//. Thus, the // program logic here! line isn’t code; it’s a comment for
programmers.

What about the two lines before and after // program logic here! that
you’re going to be copying to start every new program? There are lots of

3

new keywords there, such as public, class, and static. You’ll be learning
what these words mean in this class. For now, it’s something that you can
unthinkingly copy to every new program. Programmers often refer to this
kind of mindlessly-copied code as “boilerplate code”. Wikipedia describes
the history of the term:

The term arose from the newspaper business. Columns and other pieces that
were distributed by print syndicates were sent to subscribing newspapers in
the form of prepared printing plates. Because of their resemblance to the
metal plates used in the making of boilers, they became known as “boiler
plates”, and their resulting text - “boilerplate text”. As the stories that were
distributed by ready plates way were usually “fillers” rather than “serious”
news, the term became synonymous with unoriginal, repetitive text.

For the most part, you don’t need to think much about the code in your
Start.java file yet. However, this is one exception. Take a look at the first
line:

public class Main {

Starting with this line of code will require you to put the code in a file named
Main.java before you can compile/run it. If instead you wanted to put your
code in a file named, for example, Game.java, your first line would be this:

public class Game {

2 Dissecting Hello World

In the previous section, we introduced simple Java program. We’ll now take a
closer look at that program to learn three things about Java: (1) statement
syntax, (2) how prints work, and (3) code-block syntax. Let’s review the
program:

public class Main {
public static void main(String[] args) {

System.out.println("Hello");
}

4

}

Among other things, the program contains a single statement:

System.out.println("Hello");

The first thing to notice about that line is that it ends in a semicolon (“;”).
In Java, you need to type this at the end of every statement. This extra
typing gives you more flexibility about splitting statements across multiple
lines (Java doesn’t care if you split a statement across multiple lines because
it looks for semicolons, not newline characters). For example, although it
wouldn’t be advised (due to its ugliness), you could write two statements
across six lines like this:

System
.out
.println("Hello");

System
.out
.println("World");

What are those two lines doing? Both statements are method calls. As in
Python, you can call a method fn belonging to an object obj with something
like this: obj.fn().

For example, if you have a variable s referring to a string, you can split it
with s.split(" ") in Python. In Java it’s the same: s.split(" ").

If you’re paying close attention, you might (correctly) guess that System.out
is an object and println is a method that is being called on that object.

Why is it more complicated to print in Java than in Python? The Java
way is more general: System.out is a PrintStream object, and you can use
the same println method on other PrintStream objects besides System.out.
This makes it easier for you to adapt your program to send output somewhere
other than the screen. There is also a System.out.print method you can
call (which is similar, but will not produce a newline at the end of what
you’re printing).

5

The last thing we’ll discuss in this section are all the “{” and “}” characters
in the Java program. These characters are used to identify code blocks in
your program. Consider this Python program:

if x < 0:
x = −x # l i n e 1

print(x) # l i n e 2

How do we know that line 1 is inside the if-block whereas line 2 is after the
if block? In Python, the answer is indentation: line 1 is tabbed in (making
it part of the if’s code block), whereas line 2 is not. Java also organizes
statements into code blocks, but Java doesn’t care about tabs. Instead, it
considers all the code between a “{” and a “}” to be a code block. So, for
example, the above Python code would correspond to the following Java:

if (x < 0) {
x = −x;
}
System.out.println(x);

Java knows that x = -x; is inside the conditional because it is within the
if’s curly braces. In contrast, the println statement is after the conditional
because it is not inside the braces.

Although Java doesn’t care about tabs, programmers generally find tabbing
makes it easier to read code, so it is preferable that you write the above
example as below (which is logically equivalent):

if (x < 0) {
x = −x;

}
System.out.println(x);

To find the code block for the conditional, Java is looking for the first opening
curly brace after the if. Thus, another logically equivalent (and popular) way
of writing the above example is with the opening brace on its own line:

if (x < 0)
{

6

x = −x;
}
System.out.println(x);

Revisiting our “hello world” example, we can now see two code blocks:

public class Main {
public static void main(String[] args) {

System.out.println("Hello");
}

}

There is a class (we’ll eventually learn what a “class” is in Java) named
“Main” with a code block. That code block contains the definition of a func-
tion named “main” (lowercase). Note that instead of identifying the function
definition with a def, as in Python, we identify the function definition with
public static void (which will seem strange, until you learn the subtleties
of different types of function definitions). The braces an the end of the func-
tion header identify the code block for the statements of this function (in
this case, there is just the println).

In this section, we’ve seen major three differences between Python in Java.
In each case, you must type more for Java, but there is a reward for this
additional effort. In the case of System.out.println, we type more in trade
for a more general interface; we can use the same print and println on
PrintStream objects that go other places besides to the screen. We type
more (a semicolon) to identify the end of a statement, allowing us to split up
statements across lines more easily. Finally, we type more (curly braces) to
identify code blocks. In this case, the extra effort will help you avoid both-
ersome semantic bugs involving mis-tabbing that are common in Python.

3 Types

Take a look at this Python program:

x = 3.14

7

print(x, type(x))
x = int(x)
print(x, type(x))
x = "pi"
print(x, type(x))

The output is:

3.14 <class ’float’>

3 <class ’int’>

pi <class ’str’>

Over time the value, and type, of x changes. First x refers to an int, then a
float, and finally a str.

In Java, a variable’s value can change, but its type cannot change. Further-
more, as the programmer, you must specify what type a variable will be used
for before the variable takes a value. This is done by specifying the type
before the variable name:

int x;
x = 3;
System.out.println(x);
x = 4;
System.out.println(x);
// Java would not a l l o w us to do t h i s because
// 3 .14 i s a f l o a t , and x i s an i n t :
// x = 3 . 1 4 ;

By forcing you to specify the type of every variable, Java helps you avoid
bugs such as the following in Python:

m u l t i p l e 3∗4 to g e t 12
x = ’3’ # oops , we a c c i d e n t a l l y put a s t r i n g in x !
y = 4
print(y ∗ x) # with bug , t h i s p r i n t s 3333 , not 12

8

You may optionally combine the type specification and first assignment in
Java:

int x = 5;

In Java, values can either be either primitives or objects (this is a new distinc-
tion, as in Python, every value is what we might call an “object” in Java).
You’ll learn more about this distinction later; for now, here are some exam-
ples of primitive types and values in Java (by convention, primitive types are
lower case, so “boolean” and the others are lower case):

boolean bo = true; // on ly t r u e or f a l s e
char ch = ’A’; // s i n g l e c h a r a c t e r
int in = 20; // i n t s between +/− 2 b i l l i o n
long lo = 300L; // i n t s between +/− 10ˆ19
float fl = 1.2F; // 32 b i t f l o a t i n g p o i n t num
double d = 1.002; // 64 b i t f l o a t i n g p o i n t num
// no b y t e or s h o r t l i t e r a l s in Java , so t y p e c a s t :
byte by = (byte)2; // 8 b i t i n t e g e r
short sh = (short)−2; // 16 b i t i n t e g e r

Those last two lines are using some new syntax. In Python, type conversion
is done with function calls of the form TYPE(VALUE), like this:

x = 5.0
y = float(x)

In Java, you instead use (TYPE)VALUE. For example, we can convert a double
to an int like this:

public class Main {
public static void main(String[] args) {

double x = 5.0;
int y = (int)x;
System.out.println(y);

}
}

9

If instead, we had tried to just write int y = x, we would have gotten
a an error saying this: error: incompatible types: possible lossy

conversion from double to int.

Strings are not primitives in Java, but we’ll discuss those later.

4 Operators

One of the most confusing things about switching from Python to Java is
how comparisons between Strings and other objects is done. In Python, we
commonly use == and occasionally use is. Let’s review these:

x = [1,2,3]
y = x
z = [1,2,3]
print(x == y) # True
print(x == z) # True
print(x is y) # True
print(x is z) # F a l s e

The variables x, y, and z all refer to a list containing the same three numbers.
However, x and y are referring to the same list object, and z is referring to
a different list object that happens to have the same contents. In Python,
== (called the equality operator) checks whether two variables refer to two
objects with the the same data; is (called the identity operator) checks
whether two variables are references to the same object.

Confusingly, == is the identity operator in Java, making it equivalent to is

in Python. There is no Java operator equivalent to the equality operator
(==) in Python. Instead, you compare two objects with a call to the .equals
method. For example:

public class Main {
public static void main(String[] args) {

String h = "H";
String s1 = h + "i";
String s2 = h + "i";

10

// s1 and s2 r e f e r e n c e two d i f f e r e n t S t r i n g
// o b j e c t s c o n t a i n i n g t h e same va lue , ”Hi”

// f a l s e (l i k e Python i s)
System.out.println(s1 == s2);
// t r u e (l i k e Python ==)
System.out.println(s1.equals(s2));

}
}

Just as 90% of the time you used == instead of is in Python, the vast majority
of the time you’re going to use .equals instead of == in Java; make a habit
of it!

In Python, we’ve seen how we can increment or decrement a variable with
the += and -= assignment operators. For example:

x = 0
x += 1 # now x i s 1
x −= 1 # now x i s 0 again

These operators exist in Java too. Furthermore, incrementing or decrement-
ing by one is so common that there’s an even simpler way to do it in Java:

int x = 0;
x++; // now x i s 1
x−−; // now x i s 0 again

An expression such as x++ also produces a result, namely the value of x before
it was incremented. For example:

int x = 10;
int y = x++;
// x i s 11 , y i s 10

But putting the pluses before (++x) behaves slightly differently:

int x = 10;

11

int y = ++x;
// x i s 11 , and so i s y

While there is a special power operator in Python(**), in Java, you’ll instead
use the Math.pow function. So instead of 2 ** 3, you’ll use Math.pow(2,

3).

In Python, the logical operators are and, or, and not. In Java, these three
operators are &&, or, and !, respectively. So this Python code:

if x > 100 and not x > 200:
pass

Becomes this in Java:

if (x > 100 && !(x > 200)) {
// code

}

5 Methods

In Python, we learned that functions that are associated with objects are
called methods. In Java, we’re going to call any function inside a class

block a method. You’ll eventually learned what classes are and why these
definitions are actually equivalent. As it turns out, every Java function must
be part of a class, so don’t be surprised if people talking about Java only use
the word “method” and never mention “functions.”

We have already seen how we must explicitly declare the type of a Java
variable. We must also explicitly state the parameter and return types of a
method. We can do so something like this:

public static RETURNTYPE foo(PARAMTYPE x) {
// code

}

12

Ignore the public static for now; just always put it there until you learn
what it means. Note that the return type is specified before the method
name (in this case, “foo”), and the parameter types are specified before the
parameter names (in this case, we have one parameter, “x”). For example,
this method takes an integer and double, and returns a String:

public static String foo(int param1, double param2) {
// code
return "result";

}

You need to make sure you return a result of the correct type. What if you
don’t want to return anything? In Python, this was not possible (without
a return statement, None was returned for you automatically). In Java, we
indicate methods that don’t return anything by using the keyword void

instead of a type, like this:

public static void foo(int param1, double param2) {
// code t h a t doesn ’ t r e t u r n a n y t h i n g

}

6 Control Flow

Control flow in Java is largely similar to control flow in Python. Conditions
and while loops are similar: both use if and while behaves as expected. You
will notice that else if, abbreviated in Python as elif, is not abbreviated
in Java:

if (x > 0) {
System.out.println(x);

} else if (x < 0) {
System.out.println(−x);

} else {
System.out.println("zero");

}

13

The biggest difference is that for loops are completely different in Java. Take
a look at this loop:

for (int i = 0; i < 5; i++) {
System.out.println(i);

}

This snippet prints the numbers 0 through 4, each on a line. Notice in the
parentheses after for that there are three parts, separated by semicolons.
The first part runs before the loop, the loop keeps iterating only as long
as the condition in the second part is true, and the third part runs after
each iteration. You can mentally translate the for loop code to a while loop:

int i = 0; // 1 s t p a r t from f o r l o o p
while (i < 5) { // 2nd p a r t from f o r l o o p

System.out.println(i);
i++; // 3nd p a r t from f o r loop , same as i+=1

}

What if we want to count down over the even numbers from 10 to 0 (inclu-
sive)? We’ll want to initialize our counter to 10 (first part), loop as long as
our counter is greater than or equal to 0 (second part), and subtract 2 for
each iteration (third part).

for (int counter = 10; counter >= 0; counter −= 2) {
System.out.println(counter);

}

The above will print the numbers 10, 8, 6, 4, 2, and 0 (each on its own line).

7 Strings

The full documentation for the String API can be found here: http://docs.
oracle.com/javase/8/docs/api/java/lang/String.html. Here’s an ex-
ample with some of the more commonly useful methods. It may be worth
running these to compare the output to your expectations:

14

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

String x = "dog";
String y = "cat";
// c o n c a t e n a t i o n or appending o p e r a t i o n
System.out.println(x + y);
// compare s t r i n g c o n t e n t s
System.out.println(x.equals(x));
// number o f chars in a s t r i n g
System.out.println(x.length());
// check whether s t r i n g c o n t a i n s another
System.out.println(x.contains("og"));
// r e t u r n s s e p a r a t e uppercase v e r s i o n o f t h e s t r i n g
System.out.println(x.toUpperCase());
// note t h e s t r i n g remains unchanged
// (S t r i n g s are immutable in Java , as in Python)
System.out.println(x);
// r e t u r n s char a t index 2 w i t h i n s t r i n g
System.out.println(x.charAt(2))
// r e t u r n s u b s t r i n g s t a r t i n g a t index 1
System.out.println(x.substring(1));
// r e t u r n s u b s t r i n g a f t e r c o n c a t e n a t i o n
System.out.println((x+y).substring(2, 4));

8 Objects

In Python, we create objects with function calls, like this:

l = list() # new l i s t o b j e c t
d = dict() # new d i c t o b j e c t

The list and dict functions above are special; we can call them constructors
because they construct new objects (i.e., create and initialize objects). In
Python, we invoke constructors much as we invoke other functions, but in
Java, we need to use the new keyword before invoking a constructor:

import java.util.ArrayList;

15

import java.util.Hashtable;

public class Main {
public static void main(String[] args) {

// an ArrayLis t i s s i m i l a r to a Python l i s t
ArrayList nums = new ArrayList();
// a H a s h t a b l e i s s i m i l a r to a Python d i c t
Hashtable mapping = new Hashtable();

}
}

Note the use of new before the invocations. Java would complain if you were
to merely write nums = ArrayList().

In Java, an unassigned variable capable of referring to an object will be initial-
ized to null (the equivalent of None in Python). If you try to access objects
members using a null variable, you’ll see a java.lang.NullPointerException
Java exception.

When learning a new language, it’s important to know what changes to
parameters inside a method affect the arguments of the calling method. In
Java, there are three things to remember: (1) if an argument is a reference
to an object, the parameter will reference that same object, and so changes
via the parameter will be visible after the method returns; (2) assigning a
new object to a parameter has no effect outside the method; and (3) with
primitives (such as ints), changes to the parameter are not visible once the
method returns. Here is a complete program illustrating these three cases:

import java.util.ArrayList;

public class Main {
public static void ResetArrayList1(ArrayList list) {

// l i s t w i l l r e f e r e n c e a new o b j e c t
// (an empty ArrayLis t) ; t h e o r i g i n a l
// l i s t w i l l not be a f f e c t e d by t h i s
list = new ArrayList();

}

16

public static void ResetArrayList2(ArrayList list) {
// l i s t i s a r e f e r e n c e to an o b j e c t
// (an ArrayLis t) , so we can remove
// a l l e n t r i e s in t h e o r i g i n a l l i s t
list.clear();

}

public static void ResetInt(int val) {
// v a l i s a p r i m i t i v e (an i n t) ,
// so we have our own copy ; t h i s
// has no a f f e c t o u t s i d e o f t h i s method
val = 0;

}

public static void main(String[] args) {
ArrayList nums = new ArrayList();
int x = 300;
nums.add(300);

// making a parameter r e f e r to a new o b j e c t
// doesn ’ t a f f e c t our r e f e r e n c e
ResetArrayList1(nums);
System.out.println(nums.size()); // s t i l l i s 1

// however , t h e parameter i s another r e f e r e n c e
// to our same o b j e c t , and i t can be used to
// modify t h a t o b j e c t
ResetArrayList2(nums);
System.out.println(nums.size()); // now i s 0

// changes to p r i m i t i v e s (non o b j e c t s) are
// not v i s i b l e o u t s i d e t h e method
ResetInt(x);
System.out.println(x); // s t i l l i s 300

}
}

17

9 Arrays

In Python, it’s very common to use a list to manage a sequence of objects,
and in Java, the closest thing to a Python list is the ArrayList (mentioned
earlier).

There’s another structure you’ll frequently use in Python to manage se-
quences of values: the array. A Java array is less flexible than a Python
list, but programs using arrays will generally run much faster. Here are some
ways arrays are less flexible:

• at creation time, the type and size of an array must be specified

• the size can never change

• you can never add items of different types

• you cannot use negative indexes to access items from the end

Here is an example of variable that can be used to refer to arrays of ints:

int[] a;

Our int-array variable can refer to different arrays of different sizes at different
times, even though the array objects themselves cannot change size. Array
construction also requires use of the new keyword because arrays are objects
(not primitives):

// c r e a t e array o f 3 i n t e g e r s (s i z e cannot change)
int[] a = new int[3];

// we can ’ t add new e n t r i e s to t h a t array , bu t we can
// r e f e r e n c e a new (empty) array t h a t i s l a r g e r
a = new int[4];

Positive indexing works as expected:

18

a[0] = 300; // put 300 in f i r s t e n t r y
System.out.println(a[0]); // p r i n t 300

// t r y i n g to a c c e s s a [−1] would cause an e x c e p t i o n
// a [−1] = 321;

If we want to see what’s in an array, we should use the Arrays.toString

method:

// p r i n t i n g out a r e f e r e n c e i s r a r e l y u s e f u l
System.out.println(a);
// h e l p e r method to p r i n t array c o n t e n t s
System.out.println(Arrays.toString(a));

Instead of checking the length of an array with a len function as in Python,
you can instead use .length. Let’s print every entry in our array on its own
line, using a for loop and .length:

for (int i=0; i < a.length; i++) {
System.out.println(a[i]);

}

What happens if we try to access entries before we’ve initialized them? It
depends on the type; let’s try it with an array of Strings.

public class Main {
public static void main(String[] args) {

String[] words = new String[3];
for (int i=0; i < words.length; i++) {

System.out.println(words[i]);
}

}
}

We’ll see the following:

null

19

null

null

As you can see, the values defaulted to null (which is the same as None in
Python). It’s generally a good idea to put values in your arrays before you
access them.

10 User Input

Scanner is an object type in the Java API that provides convenient methods
for reading text from a variety of sources, including the user. It will be
convenient to add the following line to the top of your java file (before:
public class...) so that you can simply refer to this type as Scanner instead
of java.util.Scanner throughout the file.

import java.util.Scanner;

The first line of the following example creates a single scanner to read input
from the user through standard in. (Note that you should never create more
than one of these, because the resulting behavior is not defined in the Java
specification and is likely to differ in different run-time environments.) Once
this scanner object has been created, you can use methods like nextInt(),
nextDouble(), next(), and nextLine() to read successive input from the user.
All of the methods in this class are documented here: http://docs.oracle.
com/javase/8/docs/api/java/util/Scanner.html. The close() method
at the end signifies that we are done reading data through this scanner object.

Scanner in = new Scanner(System.in);
System.out.print("Please enter your age: ");
int age = in.nextInt();
System.out.print("Please enter your name: ");
String name1 = in.nextLine();
String name2 = in.nextLine();
System.out.println("("+age+","+name1+","+name2+")");
in.close();

20

http://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html
http://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html

Note there is an important and often confusing detail about the difference
between the Scanner’s nextLine() method versus the other next(), nextInt(),
nextDouble(), etc. methods. nextLine() always returns a string with all (or
any) unread characters including whitespace through the end of the current
line. The other methods skip over any initial whitespace before starting to
read a value, and then read in and return the next value that they are able
to read of the appropriate type.

The above example demonstrates a case that is often confusing for students
new to Java and the details of how this Scanner class works. Specifically,
after the user types their age and presses enter, nextInt() reads and returns
their age. The confusing part is that nextLine() also runs, reads in the
newline/enter that the user pressed after their age, and returns an empty
string since no other characters were left to be read in before the end of
that line. The next line that the user enters will be read in by the second
nextLine() and stored in the name2 variable. It could be worth experimenting
with variations of this example to help ensure that you are clear on the
behavior of these Scanner methods.

21

	Java Boilerplate
	Dissecting Hello World
	Types
	Operators
	Methods
	Control Flow
	Strings
	Objects
	Arrays
	User Input

