
[301] Using Functions
Tyler Caraza-Harter

Learning Objectives Today

How to call functions
• input/output

Modules:
• import styles
• attribute operator (the ".")
• math module

Inspection:
• discover functions in a module
• learn what function does

make a battleship game!

Please read Ch 3
of Think Python

Functions are like “mini programs”, 
as in our robot worksheet problem

Functions are like “mini programs”, 
as in our robot worksheet problem

“Move Code” is a function

Functions are like “mini programs”, 
as in our robot worksheet problem

today we’ll learn how to use
functions in Python

Functions are like “mini programs”, 
as in our robot worksheet problem

today we’ll learn how to use
functions in Python

we’ll learn about how to give functions input
with “arguments” like “moves”

Functions are like “mini programs”, 
as in our robot worksheet problem

today we’ll learn how to use
functions in Python

we’ll learn about how to give functions input
with “arguments” like “moves”

we’ll also learn how to ask functions
questions and get answers called return values

Functions are like “mini programs”, 
as in our robot worksheet problem

today we’ll learn how to use
functions in Python

we’ll learn about how to give functions input
with “arguments” like “moves”

we’ll also learn how to ask functions
questions and get answers called return values

next lecture, we’ll learn how to write
our own new functions

Some Code

code

code

...

...

...

Vocabulary
• ...

General Function Concepts

Some Code
...

...

...

A Function

code

call/invoke

call/invoke

Vocabulary
• refactor: change organization of code (e.g., to avoid repetition)

Some Code
...

...

...

A Function

code

call/invoke

call/invoke

inputs outputs

Vocabulary
• refactor: change organization of code (e.g., to avoid repetition)

A Function

Some Code
...

...

...

call/invoke

inputs

param1
param2

outputs

Vocabulary
• refactor: change organization of code (e.g., to avoid repetition)
• parameter: variable that receives input to function

A Function

Some Code
...

...

...

call/invoke

inputs

param1
param2

arg1
arg2

outputs

Vocabulary
• refactor: change organization of code (e.g., to avoid repetition)
• parameter: variable that receives input to function
• argument: value sent to a function (lines up with parameter)

A Function

Some Code
...

...

...

call/invoke

inputs

param1
param2

arg1
arg2 result

return

outputs

Vocabulary
• refactor: change organization of code (e.g., to avoid repetition)
• parameter: variable that receives input to function
• argument: value sent to a function (lines up with parameter)
• return value (or result): function output sent back to calling code

A Function

Some Code
...

...

...

call/invoke

inputs

param1
param2

arg1
result

return

outputsdefault

Vocabulary
• refactor: change organization of code (e.g., to avoid repetition)
• parameter: variable that receives input to function
• argument: value sent to a function (lines up with parameter)
• return value (or result): function output sent back to calling code
• default argument: value put in parameter if argument not passed

A Function

Some Code
...

...

...

call/invoke

inputs

param1
param2

param1 = arg1
result

return

outputsdefault

Vocabulary
• refactor: change organization of code (e.g., to avoid repetition)
• parameter: variable that receives input to function
• argument: value sent to a function (lines up with parameter)
• return value (or result): function output sent back to calling code
• default argument: value put in parameter if argument not passed
• named/keyword argument: argument explicitly tied to a parameter

print(“hello”)
result = f(x)

Calling/Invoking a Function in Python

print(“hello”)
result = f(x)

ALWAYS: function’s name

Calling/Invoking a Function in Python

print(“hello”)
result = f(x)

ALWAYS: function’s name

ALWAYS: followed by parentheses

Calling/Invoking a Function in Python

print(“hello”)
result = f(x)

arguments

ALWAYS: function’s name

ALWAYS: followed by parentheses

SOMETIMES: with one or more arguments

Calling/Invoking a Function in Python

print(“hello”)
result = f(x)

return value

ALWAYS: function’s name

ALWAYS: followed by parentheses

SOMETIMES: with one or more arguments

SOMETIMES: producing a result

Calling/Invoking a Function in Python

demos

Battleship Demo (Version 1)

 23

https://boardgamegeek.com/image/288374/battleship

........

..0.....

........

........

........

........

........

........

........

........

........

........

........

........

........

.......1

guess 2,1
(miss!)

guess 7,7
(hit!)

Version 1 (MVP)
• 1 ship, 1 guess
• ship is 1 space
• fixed position
• top/left is 0,0
• horrible graphics

Types of modules (collections of functions)

1

2

3

built into Python (__builtins__ module). print(), type(), ...

pre-installed with Python (e.g., math). sin, log, max, ...

installed with pip (e.g. jupyter)

4 written yourself (a .py file)

Types of modules (collections of functions)

1

2

3

built into Python (__builtins__ module). print(), type(), ...

pre-installed with Python (e.g., math). sin, log, max, ...

installed with pip (e.g. jupyter)

4 written yourself (a .py file)

import math

from math import log

from math import *

OR

OR

demos

Battleship Demo (Version 2)

 27

https://boardgamegeek.com/image/288374/battleship

........

..0.....

........

........

........

........

........

........

........

........

........

........

........

........

........

.......1

guess 2,1
(miss!)

guess 7,7
(hit!)

Version 2
• larger ship
• multiple ships
• random locations

Version 1 (MVP)
• 1 ship, 1 guess
• ship is 1 space
• fixed position
• top/left is 0,0
• horrible graphics

time permitting

Demo: Polar Coords Distance

3

4

5

0

distance: 5
point 1: distance 3 at angle 90°

point 2: distance 4 at angle 0°

time permitting

