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Learning Objectives Today

Understand local variables
• When are they created?
• When do they die?
• When are they shared?
• Where are they stored? (frames)

Understand global variables
• How are they accessed? (global keyword)
• Where are they stored? (global frame)

Understand argument passing
• Meaning of “pass by value”
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don't memorize the examples,
learn the rules of Python

good question: why did PyTutor
do this thing I didn't expect
at this specific line (ask us!)



Today's Outline

Context
• Examples

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing
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Context

Often (in life and programming), the same name can mean 
different things in different contexts
• Examples?
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Context

Often (in life and programming), the same name can mean 
different things in different contexts
• Examples?
• Human name: Nicholas (who is in the room?)
• Street address: 534 State Street (what city are we in?)
• Functions: speak (cat module or dog module?)
• Files: main.ipynb (which directory are we in?)
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Context

Often (in life and programming), the same name can mean 
different things in different contexts
• Examples?
• Human name: Nicholas (who is in the room?)
• Street address: 534 State Street (what city are we in?)
• Functions: speak (cat module or dog module?)
• Files: main.ipynb (which directory are we in?)

Our code often have different variables with the same name
• How do we keep variable names organized?
• How do we know what a variable name is referring to?

 6



Context

Often (in life and programming), the same name can mean 
different things in different contexts
• Examples?
• Human name: Nicholas (who is in the room?)
• Street address: 534 State Street (what city are we in?)
• Functions: speak (cat module or dog module?)
• Files: main.ipynb (which directory are we in?)

Our code often have different variables with the same name
• How do we keep variable names organized?
• How do we know what a variable name is referring to?

with groups called “frames”

we’ll learn some
rules for this
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Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing
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Frames

Every time a function is invoked (i.e., called), the invocation gets a 
new “frame” for holding variables
• The parameters also exist in a frame

Global frame
• There is always one global frame that all functions can access

When a variable name is used, Python looks two places:

the function invocation’s frame

the global frame

1

2
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Example from Think Python (3.8)
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Example from Think Python (3.8)

line1 and line2 will be in the global frame
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Example from Think Python (3.8)

line1 and line2 will be in the global frame

two frames will exist during
the time we’re executing

in print_twice
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Example from Think Python (3.8)

line1 and line2 will be in the global frame

two frames will exist during
the time we’re executing

in print_twice

you don’t generally see or interact
with frames when programming,

but it’s an important mental model
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Example from Think Python (3.8)

line1 and line2 will be in the global frame

two frames will exist during
the time we’re executing

in print_twice

you don’t generally see or interact
with frames when programming,

but it’s an important mental model

Downey illustrates like this
(this is called a stack diagram)
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Example from Think Python (3.8)

this code can access: line1, line2

global frame
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Example from Think Python (3.8)

can access: line1, line2, part1, part2, cat

global frame
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Example from Think Python (3.8)

can access: line1, line2, bruce

global frame
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Example from Think Python (3.8)

can access: line1, line2, bruce

global frame

we call the variables that can currently be
accessed “in scope” and variables that

cannot be “out of scope”
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Example from Think Python (3.8)

Arguments are copied to parameters:
this is called “pass by value”
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Think Python vs PythonTutor
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Think Python vs PythonTutor

Difference 1: PythonTutor uses boxes instead of arrows (by default)
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Think Python vs PythonTutor

Difference 2: PythonTutor more clearly indicates the global frame
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Think Python vs PythonTutor

Difference 3: PythonTutor also shows function definitions in the global frame
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Think Python vs PythonTutor

Difference 3: PythonTutor also shows function definitions in the global frame

Let's do some examples in PythonTutor
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Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

 25



Lessons about Local Variables

def set_x():
    x = 100

print(x)

Lesson 1: functions don't execute unless they're called
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Lessons about Local Variables

def set_x():
    x = 100

set_x()
print(x)

Lesson 2: variables created in a function die after function returns
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Lessons about Local Variables

def count():
    x = 1
    x += 1
    print(x)

count()
count()
count()

Lesson 3: variables start fresh every time a function is called again
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Lessons about Local Variables

def display_x():
    print(x)

def main():
    x = 100
    display_x()

main()

Lesson 4: you can't see the variables of other function invocations, even those that call you
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Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing
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Lessons about Global Variables

msg = 'hello' # global, outside any func

def greeting():
    print(msg)

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 5: you can generally just use global variables inside a function
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Lessons about Global Variables

msg = 'hello'

def greeting():
    msg = 'welcome!'
    print('greeting: ' + msg)

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 6: if you do an assignment to a variable in a function, Python assumes you want it local
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Lessons about Global Variables

msg = 'hello'

def greeting():
    print('greeting: ' + msg)
    msg = 'welcome!'

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 7: assignment to a variable should be before its use in a function, even if there's
              a global variable with the same name
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Lessons about Global Variables

msg = 'hello'

def greeting():
    global msg
    print('greeting: ' + msg)
    msg = 'welcome!'

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 8: use a global declaration to prevent Python from creating a 
               local variable when you want a global variable

 34



Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing
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Lessons about Argument Passing

def f(x):
    x = 'B'
    print('inside: ' + x)

val = 'A'
print('before: ' + val)
f(val)
print('after: ' + val)

Lesson 9: in Python, arguments are "passed by value", meaning 
              reassignments to a parameter don't change the argument outside
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Lessons about Argument Passing

x = 'A'

def f(x):
    x = 'B'
    print('inside: ' + x)

print('before: ' + x)
f(x)
print('after: ' + x)

Lesson 10: it's irrelevant whether the argument (outside) and 
                parameter (inside) have the same variable name
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Lesson Summary
Lesson 1: functions don't execute unless they're called

Lesson 2: variables created in a function die after function returns

Lesson 3: variables start fresh every time a function is called again

Lesson 4: you can't see the variables of other function invocations, even those that call you

Lesson 5: you can generally just use global variables inside a function 

Lesson 6: if you do an assignment to a variable in a function, Python assumes you want it local

Lesson 7: assignment to a variable should be before its use in a function, even if there's a a global variable 
with the same name 

Lesson 8: use a global declaration to prevent Python from creating a local variable when you want a 
global variable 

Lesson 9: in Python, arguments are "passed by value", meaning reassignments to a parameter don't 
change the argument outside

Lesson 10: it's irrelevant whether the argument (outside) and parameter (inside) have the same variable 
name
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