
[301] Function Scope
Tyler Caraza-Harter

 1

Learning Objectives Today

Understand local variables
• When are they created?
• When do they die?
• When are they shared?
• Where are they stored? (frames)

Understand global variables
• How are they accessed? (global keyword)
• Where are they stored? (global frame)

Understand argument passing
• Meaning of “pass by value”

 2

don't memorize the examples,
learn the rules of Python

good question: why did PyTutor
do this thing I didn't expect
at this specific line (ask us!)

Today's Outline

Context
• Examples

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

 3

Context

Often (in life and programming), the same name can mean
different things in different contexts
• Examples?

 4

Context

Often (in life and programming), the same name can mean
different things in different contexts
• Examples?
• Human name: Nicholas (who is in the room?)
• Street address: 534 State Street (what city are we in?)
• Functions: speak (cat module or dog module?)
• Files: main.ipynb (which directory are we in?)

 5

Context

Often (in life and programming), the same name can mean
different things in different contexts
• Examples?
• Human name: Nicholas (who is in the room?)
• Street address: 534 State Street (what city are we in?)
• Functions: speak (cat module or dog module?)
• Files: main.ipynb (which directory are we in?)

Our code often have different variables with the same name
• How do we keep variable names organized?
• How do we know what a variable name is referring to?

 6

Context

Often (in life and programming), the same name can mean
different things in different contexts
• Examples?
• Human name: Nicholas (who is in the room?)
• Street address: 534 State Street (what city are we in?)
• Functions: speak (cat module or dog module?)
• Files: main.ipynb (which directory are we in?)

Our code often have different variables with the same name
• How do we keep variable names organized?
• How do we know what a variable name is referring to?

with groups called “frames”

we’ll learn some
rules for this

 7

Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

 8

Frames

Every time a function is invoked (i.e., called), the invocation gets a
new “frame” for holding variables
• The parameters also exist in a frame

Global frame
• There is always one global frame that all functions can access

When a variable name is used, Python looks two places:

the function invocation’s frame

the global frame

1

2

 9

Example from Think Python (3.8)

 10

Example from Think Python (3.8)

line1 and line2 will be in the global frame

 11

Example from Think Python (3.8)

line1 and line2 will be in the global frame

two frames will exist during
the time we’re executing

in print_twice

 12

Example from Think Python (3.8)

line1 and line2 will be in the global frame

two frames will exist during
the time we’re executing

in print_twice

you don’t generally see or interact
with frames when programming,

but it’s an important mental model

 13

Example from Think Python (3.8)

line1 and line2 will be in the global frame

two frames will exist during
the time we’re executing

in print_twice

you don’t generally see or interact
with frames when programming,

but it’s an important mental model

Downey illustrates like this
(this is called a stack diagram)

 14

Example from Think Python (3.8)

this code can access: line1, line2

global frame

 15

Example from Think Python (3.8)

can access: line1, line2, part1, part2, cat

global frame

 16

Example from Think Python (3.8)

can access: line1, line2, bruce

global frame

 17

Example from Think Python (3.8)

can access: line1, line2, bruce

global frame

we call the variables that can currently be
accessed “in scope” and variables that

cannot be “out of scope”

 18

Example from Think Python (3.8)

Arguments are copied to parameters:
this is called “pass by value”

 19

Think Python vs PythonTutor

 20

Think Python vs PythonTutor

Difference 1: PythonTutor uses boxes instead of arrows (by default)

 21

Think Python vs PythonTutor

Difference 2: PythonTutor more clearly indicates the global frame

 22

Think Python vs PythonTutor

Difference 3: PythonTutor also shows function definitions in the global frame

 23

Think Python vs PythonTutor

Difference 3: PythonTutor also shows function definitions in the global frame

Let's do some examples in PythonTutor

 24

Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

 25

Lessons about Local Variables

def set_x():
 x = 100

print(x)

Lesson 1: functions don't execute unless they're called

 26

Lessons about Local Variables

def set_x():
 x = 100

set_x()
print(x)

Lesson 2: variables created in a function die after function returns

 27

Lessons about Local Variables

def count():
 x = 1
 x += 1
 print(x)

count()
count()
count()

Lesson 3: variables start fresh every time a function is called again

 28

Lessons about Local Variables

def display_x():
 print(x)

def main():
 x = 100
 display_x()

main()

Lesson 4: you can't see the variables of other function invocations, even those that call you

 29

Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

 30

Lessons about Global Variables

msg = 'hello' # global, outside any func

def greeting():
 print(msg)

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 5: you can generally just use global variables inside a function

 31

Lessons about Global Variables

msg = 'hello'

def greeting():
 msg = 'welcome!'
 print('greeting: ' + msg)

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 6: if you do an assignment to a variable in a function, Python assumes you want it local

 32

Lessons about Global Variables

msg = 'hello'

def greeting():
 print('greeting: ' + msg)
 msg = 'welcome!'

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 7: assignment to a variable should be before its use in a function, even if there's
 a global variable with the same name

 33

Lessons about Global Variables

msg = 'hello'

def greeting():
 global msg
 print('greeting: ' + msg)
 msg = 'welcome!'

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 8: use a global declaration to prevent Python from creating a 
 local variable when you want a global variable

 34

Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

 35

Lessons about Argument Passing

def f(x):
 x = 'B'
 print('inside: ' + x)

val = 'A'
print('before: ' + val)
f(val)
print('after: ' + val)

Lesson 9: in Python, arguments are "passed by value", meaning
 reassignments to a parameter don't change the argument outside

 36

Lessons about Argument Passing

x = 'A'

def f(x):
 x = 'B'
 print('inside: ' + x)

print('before: ' + x)
f(x)
print('after: ' + x)

Lesson 10: it's irrelevant whether the argument (outside) and 
 parameter (inside) have the same variable name

 37

Lesson Summary
Lesson 1: functions don't execute unless they're called

Lesson 2: variables created in a function die after function returns

Lesson 3: variables start fresh every time a function is called again

Lesson 4: you can't see the variables of other function invocations, even those that call you

Lesson 5: you can generally just use global variables inside a function

Lesson 6: if you do an assignment to a variable in a function, Python assumes you want it local

Lesson 7: assignment to a variable should be before its use in a function, even if there's a a global variable
with the same name

Lesson 8: use a global declaration to prevent Python from creating a local variable when you want a
global variable

Lesson 9: in Python, arguments are "passed by value", meaning reassignments to a parameter don't
change the argument outside

Lesson 10: it's irrelevant whether the argument (outside) and parameter (inside) have the same variable
name

 38

Lo
ca

l
G

lo
ba

l
Pa

ra
m

et
er

s

