
CS 301: Recursion
The Art of Self Reference

Tyler Caraza-Harter

Hofstadter's Law: “It always takes longer than you expect, even when
you take into account Hofstadter's Law.”

(From Gödel, Escher, Bach)

https://en.wikipedia.org/wiki/Circular_definition

Goal: use self-reference is a meaningful way

good advice for CS 301 assignments!

Hofstadter's Law: “It always takes longer than you expect, even when
you take into account Hofstadter's Law.”

(From Gödel, Escher, Bach)

mountain: “a landmass that projects conspicuously above its
surroundings and is higher than a hill”

hill: “a usually rounded natural elevation of land lower than a mountain”

(Example of unhelpful self reference from Merriam-Webster dictionary)

https://en.wikipedia.org/wiki/Circular_definition

Goal: use self-reference is a meaningful way

Overview: Learning Objectives
Recursive information

• What is a recursive definition/structure?
• Arbitrarily vs. infinitely

Recursive code
• What is recursive code?
• Why write recursive code?
• Where do computers keep local variables for recursive calls?
• What happens to programs with infinite recursion?

Read Think Python
✦ Ch 5: “Recursion” through “Infinite Recursion”
✦ Ch 6: “More Recursion” through end

Overview: Learning Objectives
Recursive information

• What is a recursive definition/structure?
• Arbitrarily vs. infinitely

Recursive code
• What is recursive code?
• Why write recursive code?
• Where do computers keep local variables for recursive calls?
• What happens to programs with infinite recursion?

Read Think Python
✦ Ch 5: “Recursion” through “Infinite Recursion”
✦ Ch 6: “More Recursion” through end

What is Recursion?

Recursive definitions contain the term in the body
• Dictionaries, mathematical definitions, etc

A number x is a positive even number if: 

• x is 2

 OR

• x equals another positive even number plus two

What is Recursion?

Recursive definitions contain the term in the body
• Dictionaries, mathematical definitions, etc

Recursive structures may refer to structures of the same type
• data structures or real-world structures

rowsrows = [
 [“A”,[1,2]],
 [“B”,[3,4,5]],
 [“C”,[6,7]]
] “A” “B” “C”

1 2 3 4 6 75

Recursive structures are EVERYWHERE!

{
“name”: “alice”,
“grade”: “A”,
“score”: 96,
“exams”: {
 “midterm”: {“points”:94,
 “total”:100},
 “final”: {“points”: 98,
 “total”: 100}
}

}

files
directories

nature files formats

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

?

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

? ?
?

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

? ?

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

? ? ?? ?

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

trees are arbitrarily large:
recursive case allows

indefinite growth

arbitrarily != infinitely

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

trees are arbitrarily large:
recursive case allows

indefinite growth
trees are finite:

eventual base case
allows completion

arbitrarily != infinitely

base case (leaf)

recursive case (branch)

Example: Directories (aka folders)

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

Term: directory

Def: a collection of files and directories

recursive because def contains term

file system tree

Example: (simplified) JSON Format

Example JSON Dictionary: 

{
“name”: “alice”,
“grade”: “A”,
“score”: 96

}

Example: (simplified) JSON Format

Example JSON Dictionary: 

{
“name”: “alice”,
“grade”: “A”,
“score”: 96

}

Term: json-dict
Def: a set of json-mapping's

Example: (simplified) JSON Format

Example JSON Dictionary: 

{
“name”: “alice”,
“grade”: “A”,
“score”: 96

}

Term: json-dict
Def: a set of json-mapping's

Example: (simplified) JSON Format

Example JSON Dictionary: 

{
“name”: “alice”,
“grade”: “A”,
“score”: 96

}

Term: json-dict
Def: a set of json-mapping's

Term: json-mapping
Def: a json-string (KEY) paired with a
 json-string OR json-number
 OR json-dict (VALUE)

keys values

Example: (simplified) JSON Format

Example JSON Dictionary: 

{
“name”: “alice”,
“grade”: “A”,
“score”: 96

}

Term: json-dict
Def: a set of json-mapping's

Term: json-mapping
Def: a json-string (KEY) paired with a
 json-string OR json-number
 OR json-dict (VALUE)

recursive self reference isn’t always direct!

Example: (simplified) JSON Format

Example JSON Dictionary: 

{
“name”: “alice”,
“grade”: “A”,
“score”: 96,
“exams”: {
 “midterm”: 94,
 “final”: 98
}

}

Term: json-dict
Def: a set of json-mapping's

Term: json-mapping
Def: a json-string (KEY) paired with a
 json-string OR json-number
 OR json-dict (VALUE)

Example: (simplified) JSON Format

Example JSON Dictionary: 

{
“name”: “alice”,
“grade”: “A”,
“score”: 96,
“exams”: {
 “midterm”: {“points”:94,
 “total”:100},
 “final”: {“points”: 98,
 “total”: 100}
}

}

Term: json-dict
Def: a set of json-mapping's

Term: json-mapping
Def: a json-string (KEY) paired with a
 json-string OR json-number
 OR json-dict (VALUE)

Example: (simplified) JSON Format

Example JSON Dictionary: 

{
“name”: “alice”,
“grade”: “A”,
“score”: 96,
“exams”: {
 “midterm”: {“points”:94,
 “total”:100},
 “final”: {“points”: 98,
 “total”: 100}
}

}

Term: json-dict
Def: a set of json-mapping's

Term: json-mapping
Def: a json-string (KEY) paired with a
 json-string OR json-number
 OR json-dict (VALUE)

Overview: Learning Objectives
Recursive information

• What is a recursive definition/structure?
• Arbitrarily vs. infinitely

Recursive code
• What is recursive code?
• Why write recursive code?
• Where do computers keep local variables for recursive calls?
• What happens to programs with infinite recursion?

Recursive Code

What is it?
• A function that calls itself (possible indirectly)

f g h

call

callcall

Recursive Code

What is it?
• A function that calls itself (possible indirectly)

g h

call

call

def f():
 # other code
 f()
 # other code

Recursive Code

What is it?
• A function that calls itself (possible indirectly)

def f():
 # other code
 f()
 # other code

def g():
 # other code
 h()
 # other code

def h():
 # other code
 g()
 # other code

Recursive Code

What is it?
• A function that calls itself (possible indirectly)

Motivation: don’t know how big the data is before execution
• Need either iteration or recursion
• In theory, these techniques are equally powerful

Recursive Code

What is it?
• A function that calls itself (possible indirectly)

Motivation: don’t know how big the data is before execution
• Need either iteration or recursion
• In theory, these techniques are equally powerful

Why recurse? (instead of always iterating)
• in practice, often easier
• recursive code corresponds to recursive data
• reduce a big problem into a smaller problem

https://texastreesurgeons.com/services/tree-removal/

https://texastreesurgeons.com/services/tree-removal/

Recursive Students

Example from https://courses.cs.washington.edu/courses/cse143/17au/

eager CS 301 students
in the front row

wise and benevolent
teacher wearing a top hat

Recursive Students
Imagine:

A teacher wants to know how
many students are in a column.
What should each student ask
the person behind them?

Constraints:
• It is dark, you can’t see the back
• You can’t get up to count
• You may talk to adjacent students
• Mic is broken (students in back

can't hear from front)

How many
students are in
this column?

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Students
Strategy: reframe question as “how
many students are behind you?”

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

Recursive Students
Strategy: reframe question as “how
many students are behind you?”

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

Reframing is the hardest part

Recursive Students
Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody is behind you: say 0
else: ask them, say their answer+1

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

Recursive Students

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

how many are behind you?

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody is behind you: say 0
else: ask them, say their answer+1

Recursive Students

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

how many are behind you?

how many are behind you?

how many are behind you?

how many are behind you?

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody is behind you: say 0
else: ask them, say their answer+1

Recursive Students

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

how many are behind you?

how many are behind you?

20

how many are behind you?

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody is behind you: say 0
else: ask them, say their answer+1

Recursive Students

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

how many are behind you?

21

20

how many are behind you?

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody is behind you: say 0
else: ask them, say their answer+1

Recursive Students

Example from https://courses.cs.washington.edu/courses/cse143/17au/

23

22

21

20

24

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody is behind you: say 0
else: ask them, say their answer+1

Recursive Students

Example from https://courses.cs.washington.edu/courses/cse143/17au/

23

22

21

20

24

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody is behind you: say 0
else: ask them, say their answer+1

Aha! Clearly there
must be 25 students

in this column

Recursive Students

Example from https://courses.cs.washington.edu/courses/cse143/17au/

23

22

21

20

24

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody is behind you: say 0
else: ask them, say their answer+1

Observations:
• Each student runs the same “code”
• Each student has their own “state”

Aha! Clearly there
must be 25 students

in this column

Practice: Reframing Factorials

N! = 1 x 2 x 3 x … x (N-2) x (N-1) x N

Example: Factorials
3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

Goal: work from examples to get to recursive code

def fact(n):
 pass # TODO

Example: Factorials
3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

look for patterns that allow
rewrites with self reference

def fact(n):
 pass # TODO

Example: Factorials
3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

look for patterns that allow
rewrites with self reference

def fact(n):
 pass # TODO

Example: Factorials
3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

1! =
2! =
3! =
4! =
5! = 4! * 5

def fact(n):
 pass # TODO

Example: Factorials
3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

1! =
2! =
3! =
4! =
5! = 4! * 5

def fact(n):
 pass # TODO

Example: Factorials
3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

1! =
2! =
3! =
4! = 3! * 4
5! = 4! * 5

def fact(n):
 pass # TODO

Example: Factorials
3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:
1! =
2! = 1! * 2
3! = 2! * 3
4! = 3! * 4
5! = 4! * 5

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120 def fact(n):

 pass # TODO

Example: Factorials
3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:
1! = 1
2! = 1! * 2
3! = 2! * 3
4! = 3! * 4
5! = 4! * 5

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

don’t need a pattern
at the start

def fact(n):
 pass # TODO

Example: Factorials
3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:
1! = 1
2! = 1! * 2
3! = 2! * 3
4! = 3! * 4
5! = 4! * 5

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

convert self-referring examples
to a recursive definition

def fact(n):
 pass # TODO

Example: Factorials
3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:
1! = 1
2! = 1! * 2
3! = 2! * 3
4! = 3! * 4
5! = 4! * 5

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

1! is 1

def fact(n):
 pass # TODO

Example: Factorials
3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:
1! = 1
2! = 1! * 2
3! = 2! * 3
4! = 3! * 4
5! = 4! * 5

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

1! is 1  
N! is ???? for N>1

def fact(n):
 pass # TODO

Example: Factorials
3. Recursive Definition:1. Examples:

def fact(n):
 pass # TODO

4. Python Code:

2. Self Reference:
1! = 1
2! = 1! * 2
3! = 2! * 3
4! = 3! * 4
5! = 4! * 5

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

1! is 1  
N! is (N-1)! * N for N>1

Example: Factorials
3. Recursive Definition:1. Examples:

def fact(n):
 pass # TODO

4. Python Code:

2. Self Reference:
1! = 1
2! = 1! * 2
3! = 2! * 3
4! = 3! * 4
5! = 4! * 5

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

1! is 1  
N! is (N-1)! * N for N>1

Example: Factorials
3. Recursive Definition:1. Examples:

def fact(n):
 if n == 1:
 return 1

4. Python Code:

2. Self Reference:
1! = 1
2! = 1! * 2
3! = 2! * 3
4! = 3! * 4
5! = 4! * 5

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

1! is 1  
N! is (N-1)! * N for N>1

Example: Factorials
3. Recursive Definition:1. Examples:

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

4. Python Code:

2. Self Reference:
1! = 1
2! = 1! * 2
3! = 2! * 3
4! = 3! * 4
5! = 4! * 5

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

1! is 1  
N! is (N-1)! * N for N>1

Example: Factorials
3. Recursive Definition:1. Examples:

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

4. Python Code:

2. Self Reference:
1! = 1
2! = 1! * 2
3! = 2! * 3
4! = 3! * 4
5! = 4! * 5

1! = 1
2! = 1*2 = 2
3! = 1*2*3 = 6
4! = 1*2*3*4 = 24
5! = 1*2*3*4*5 = 120

1! is 1  
N! is (N-1)! * N for N>1

Let’s “run” it!

fact(n=4)Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

Note, this is not a stack frame!
We're tracing code line-by-line.

Boxes represent which invocation.

somebody
called fact(4)

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:
fact(n=2)

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:
fact(n=2)

if n == 1:

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:
fact(n=2)

if n == 1:

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:
fact(n=2)

if n == 1:

fact(n=1)

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:
fact(n=2)

if n == 1:

fact(n=1)
if n == 1:

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:
fact(n=2)

if n == 1:

fact(n=1)
if n == 1:

return 1

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:
fact(n=2)

if n == 1:

p = 1

fact(n=1)
if n == 1:

return 1

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:
fact(n=2)

if n == 1:

p = 1
return 2

fact(n=1)
if n == 1:

return 1

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:

p = 2

fact(n=2)
if n == 1:

p = 1
return 2

fact(n=1)
if n == 1:

return 1

fact(n=4)
if n == 1: Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:

p = 2
return 6

fact(n=2)
if n == 1:

p = 1
return 2

fact(n=1)
if n == 1:

return 1

fact(n=4)
if n == 1:

p = 6

Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:

p = 2
return 6

fact(n=2)
if n == 1:

p = 1
return 2

fact(n=1)
if n == 1:

return 1

fact(n=4)
if n == 1:

p = 6
return 24

Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:

p = 2
return 6

fact(n=2)
if n == 1:

p = 1
return 2

fact(n=1)
if n == 1:

return 1

fact(n=4)
if n == 1:

p = 6
return 24

Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:

p = 2
return 6

fact(n=2)
if n == 1:

p = 1
return 2

fact(n=1)
if n == 1:

return 1

fact(n=4)
if n == 1:

p = 6
return 24

Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

fact(n=3)
if n == 1:

p = 2
return 6

fact(n=2)
if n == 1:

p = 1
return 2

fact(n=1)
if n == 1:

return 1

How does Python keep
all the variables separate?

Tracing Factorial

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

frames to the rescue!

fact(n=4)
if n == 1:

p = 6
return 24

fact(n=3)
if n == 1:

p = 2
return 6

fact(n=2)
if n == 1:

p = 1
return 2

fact(n=1)
if n == 1:

return 1

How does Python keep
all the variables separate?

Deep Dive: Invocation State
In recursion, each function invocation has its own state, but multiple
invocations share code.

Deep Dive: Invocation State
In recursion, each function invocation has its own state, but multiple
invocations share code.

Variables for an invocation exist in a frame

frame: variables

Deep Dive: Invocation State
In recursion, each function invocation has its own state, but multiple
invocations share code.

Variables for an invocation exist in a frame
• the frames are stored in the stack

frame: stack: activevariables

Deep Dive: Invocation State
In recursion, each function invocation has its own state, but multiple
invocations share code.

Variables for an invocation exist in a frame
• the frames are stored in the stack
• one invocation is active at a time: its frame is on the top of stack

frame: stack: active

pop!

variables

Deep Dive: Invocation State
In recursion, each function invocation has its own state, but multiple
invocations share code.

Variables for an invocation exist in a frame
• the frames are stored in the stack
• one invocation is active at a time: its frame is on the top of stack
• if a function calls itself, there will be multiple frames at the same

time for the multiple invocations of the same function

frame: stack:
fact

variables fact
fact
fact
global

global

time
0 1 2 3 4 5 6

Current
Runtime Stack

Deep Dive:
Runtime Stack

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

global

time
0 1 2 3 4 5 6

Current
Runtime Stack

call fact(3)

Deep Dive:
Runtime Stack

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

global global

fact
n=3

time
0 1 2 3 4 5 6

new, active frame

Current
Runtime Stack

Deep Dive:
Runtime Stack

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

global global

fact
n=3
p=

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

time
0 1 2 3 4 5 6

Deep Dive:
Runtime Stack

global global

fact
n=3
p=

global

fact
n=3
p=

fact
n=2

time
0 1 2 3 4 5 6

Deep Dive:
Runtime Stack

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

global global

fact
n=3
p=

global

fact
n=3
p=

fact
n=2
p=

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

time
0 1 2 3 4 5 6

Deep Dive:
Runtime Stack

global global

fact
n=3
p=

global

fact
n=3
p=

fact
n=2
p=

global

fact
n=3
p=

fact
n=2
p=

fact
n=1

time
0 1 2 3 4 5 6

Deep Dive:
Runtime Stack

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

global global

fact
n=3
p=

global

fact
n=3
p=

fact
n=2
p=

global

fact
n=3
p=

fact
n=2
p=

fact
n=1 return 1 (base case)

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

time
0 1 2 3 4 5 6

Deep Dive:
Runtime Stack

Deep Dive:
Runtime Stack

global global

fact
n=3
p=

global

fact
n=3
p=

fact
n=2
p=

global

fact
n=3
p=

fact
n=2
p=

fact
n=1

global

fact
n=3
p=

fact
n=2
p=

return 1 (base case)

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

time
0 1 2 3 4 5 6

Deep Dive:
Runtime Stack

global global

fact
n=3
p=

global

fact
n=3
p=

fact
n=2
p=

global

fact
n=3
p=

fact
n=2
p=

fact
n=1

global

fact
n=3
p=

fact
n=2
p=1

return 1 (base case)

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

time
0 1 2 3 4 5 6

global global

fact
n=3
p=

global

fact
n=3
p=

fact
n=2
p=

global

fact
n=3
p=

fact
n=2
p=

fact
n=1

global

fact
n=3
p=

fact
n=2
p=1

return 1 (base case)

return 2 (n*p)

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

time
0 1 2 3 4 5 6

Deep Dive:
Runtime Stack

global global

fact
n=3
p=

global

fact
n=3
p=

fact
n=2
p=

global

fact
n=3
p=

fact
n=2
p=

fact
n=1

global

fact
n=3
p=

fact
n=2
p=1

global

fact
n=3
p=

return 1 (base case)

return 2 (n*p)

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

time
0 1 2 3 4 5 6

Deep Dive:
Runtime Stack

global global

fact
n=3
p=

global

fact
n=3
p=

fact
n=2
p=

global

fact
n=3
p=

fact
n=2
p=

fact
n=1

global

fact
n=3
p=

fact
n=2
p=1

global

fact
n=3
p=2

return 1 (base case)

return 2 (n*p)

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

time
0 1 2 3 4 5 6

Deep Dive:
Runtime Stack

global global

fact
n=3
p=

global

fact
n=3
p=

fact
n=2
p=

global

fact
n=3
p=

fact
n=2
p=

fact
n=1

global

fact
n=3
p=

fact
n=2
p=1

global

fact
n=3
p=2

return 1 (base case)

return 2 (n*p)

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

return 6 (n*p)

time
0 1 2 3 4 5 6

Deep Dive:
Runtime Stack

global global

fact
n=3
p=

global

fact
n=3
p=

fact
n=2
p=

global

fact
n=3
p=

fact
n=2
p=

fact
n=1

global

fact
n=3
p=

fact
n=2
p=1

global

fact
n=3
p=2

global

return 1 (base case)

return 2 (n*p)

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

return 6 (n*p)

time
0 1 2 3 4 5 6

Deep Dive:
Runtime Stack

“Infinite” Recursion Bugs

What happens if:
•
•

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

“Infinite” Recursion Bugs

What happens if:
• we forgot the “n == 1” check?
•

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

“Infinite” Recursion Bugs

What happens if:
• we forgot the “n == 1” check?
• factorial is called with a negative number?

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

-1

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

“Infinite” Recursion Bugs

What happens if:
• we forgot the “n == 1” check?
• factorial is called with a negative number?

never
terminates

-1
 fact

 p = fact

“Infinite” Recursion Bugs

What happens if:
• we forgot the “n == 1” check?
• factorial is called with a negative number?

global

fact
n=3

fact
n=2

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

never
terminates

-1
 fact

 p = fact

“Infinite” Recursion Bugs

What happens if:
• we forgot the “n == 1” check?
• factorial is called with a negative number?

global

fact
n=3

fact
n=2

fact
n=1

fact
n=0

fact
n=-1

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

never
terminates

-1
 fact

 p = fact

“Infinite” Recursion Bugs

What happens if:
• we forgot the “n == 1” check?
• factorial is called with a negative number?

global

fact
n=3

fact
n=2

fact
n=1

fact
n=0

fact
n=-1

fact
n=-2

…
StackOverflowError

def fact(n):
 if n == 1:
 return 1
 p = fact(n-1)
 return n * p

never
terminates

-1
 fact

 p = fact

Coding Demos

Demo 1: Pretty Print
Goal: format nested lists of bullet points

Input:

• The recursive lists

Output:

• Appropriately-tabbed items

Example: 
 

>>> pretty_print([“A”, [“1”, “2”, “3”,],  
 “B”, [“4”, [“i”, “ii”]]])  
*A  
 *1  
 *2  
 *3  
*B  
 *4  
 *i  
 *ii

Demo 2: Recursive List Search

Goal: does a given number exist in a recursive structure?

Input:

• A number

• A list of numbers and lists (which contain other numbers and lists)

Output:

• True if there’s a list containing the number, else False

Example: 
 
>>> contains(3, [1,2,[4,[[3],[8,9]],5,6]])  
True  
>>> contains(12, [1,2,[4,[[3],[8,9]],5,6]])  
False

Conclusion: Review Learning Objectives

Learning Objectives: Recursive Information
What is a recursive definition/structure?

• Definition contains term
• Structure refers to others of same type
• Example: a dictionary contains dictionaries (which may contain...)

recursive case

base case

Learning Objectives: Recursive Code
What is recursive code?

• Function that sometimes itself (maybe indirectly)

Why write recursive code?
• Real-world data/structures are recursive; intuitive for code to reflect data

Where do computers keep local variables for recursive calls?
• In a section of memory called a “frame”
• Only one function is active at a time, so keep frames in a stack

What happens to programs with infinite recursion?
• Calls keep pushing more frames
• Exhaust memory, throw StackOverflowError

https://xkcd.com/244/

Questions?

