CS 301: Recursion

The Art of Self Reference

Tyler Caraza-Harter

Goal: use self-reference is a meaningful way

Hofstadter's Law: “It always takes longer than you expect, even when
you take into account Hofstadter's Law.”

(From Godel, Escher, Bach)

good advice for CS 301 assignments!

https://en.wikipedia.org/wiki/Circular_definition

Goal: use self-reference is a meaningful way

mountain: “a landmass that projects conspicuously above its
surroundings and is higher than a hill”

hill: “a usually rounded natural elevation of land lower than a mountain”

(Example of unhelpful self reference from Merriam-Webster dictionary)

https://en.wikipedia.org/wiki/Circular_definition

Overview: Learning Objectives

Recursive information
* \What is a recursive definition/structure?
* Arbitrarily vs. infinitely

Recursive code
* What is recursive code”
 Why write recursive code”
Where do computers keep local variables for recursive calls?
W

nat happens to programs with infinite recursion”

Read Think Python

+ Ch 5: “Recursion” through “Infinite Recursion”
+ Ch 6: “More Recursion” through end

Overview: Learning Objectlves

Recurswe information _
.« What s a recursive definition/structure? :
* Arbitrarily vs. infinitely :

Recursive code
* What is recursive code”
 Why write recursive code”
Where do computers keep local variables for recursive calls?
W

nat happens to programs with infinite recursion”

Read Think Python

+ Ch 5: “Recursion” through “Infinite Recursion”
+ Ch 6: “More Recursion” through end

What is Recursion?

Recursive definitions contain the term in the body
e Dictionaries, mathematical definitions, etc

A number X is a positive even number if:

e XIS 2
OR

« X equals another positive even number plus two

What is Recursion?

Recursive definitions contain the term in the body
e Dictionaries, mathematical definitions, etc

Recursive structures may refer to structures of the same type
e data structures or real-world structures

rows = |
[“A",[1,2]],
[“B",[3,4,35]1],
[“C",[6,7]]

TOWS

Recursive structures are EVERYWHERE!

nature

files

“name”: *“alice”,
ugraden. uAn
“score”: 96,
“exams”: {

4

“midterm”: {“points”:94,
“total”:100},
“final”: {“points”: 98,
“total”: 100}

formats

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR

terminating with a leaf \

trees are arbitrarily large:
recursive case allows
indefinite growth

arbitrarily = infinitely

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR

terminating with a leaf \

trees are arbitrarily large:
recursive case allows
indefinite growth

trees are finite:
eventual base case
allows completion

arbitrarily = infinitely

‘ base case (leaf)

recursive case (branch)

Example: Directories (aka folders)

Term: directory

\ recursive because def contains term

RN

Def: a collection of files and directories

O @) 7 directoryA
< Bl= oo = % =. 3o
Favorites

** Dropbox

@ AirDrop IXT IXT IXT
@ All My Files 1.txt 2.1xt 3.txt directoryB directoryB2
¢™) iCloud Drive

/~: Applications
] Desktop

f&ﬁ Dociiments

Example: Directories (aka folders)

Term: directory

\ recursive because def contains term

RN

Def: a collection of files and directories

| NN ' directoryA

4 %E[DI[D]I IERVERE «

ill
<
.
s
£

Favorites
<
<2 Dropbox

@ AirDrop TXT TXT TXT
@ All My Files 1.txt 2.1xt 3.txt directoryB directoryB2

46 6 ¢ V V

file system tree

¢y iCloud Drive
/~: Applications
=) Desktop

[ﬂﬁ Dociiments

Example: Directories (aka folders)

Term: directory

\ recursive because def contains term

RN

Def: a collection of files and directories

| NN ' directoryA

4 %E[DI[D]I IERVERE «

il
<
.
s
£

Favorites
<
<2 Dropbox

@ AirDrop TXT TXT TXT
E) All My Files 1.txt 2.txt 3.txt directoryB directoryB2

46 6 ¢ V V

file system tree

¢’ iCloud Drive
/~: Applications
=) Desktop

rﬂ‘ﬁ Dociiments

Example: Directories (aka folders)

Term: directory

\ recursive because def contains term

N

Def: a collection of files and directories

| NON directoryB
< Bl=o0 o = #. :

Favorites

ill
<
<
/0]

7\

33 Dropbox
@ AirDrop
Favori @ All My Files directoryC readme.txt
¢ iCloud Drive

/2 Applications

] Desktop

M) Documen is

™) iCloud Drive

M9 4

directoryB directoryB2

/~: Applications
=] Desktop

l'gﬁ Dociiments

file system tree

Example: Directories (aka folders)

Term: directory

\ recursive because def contains term

RN

Def: a collection of files and directories

| NON directoryB
< :: ElERENE R =" = Q
O .
Favori tes
4 3,: Dropbox
@ AirDrop
Favori @ All My Files readme.txt
Reates
%" | & iCloud Drive
@ /2 Applications
8 B8 Desktop directoryB directoryB2
M) Documen is
¢’} iCloud Drive

/~: Applications
] Desktop

f&'ﬁ Dociiments

file system tree

Example: Directories (aka folders)

Term: directory

Def: a collection of files and directories

\ recursive because def contains term

N

| NON directoryB
< Bl=omo = #. =v 3= Q
O O @® directoryC
Favorites —

4 22 Dropbox < = [0 ol ZBv | %~ =V v
<&
@) Airbrop Favorites

Favori .

& Al My Files 32 Dropbox

Reates

*e> H H

" ¢ iCloud Drive @) AirDrop IXT

@ #%; Applications E) All My Files keep-going not-there-yet.txt
] Desktop

8 & iCloud Drive
M) Documents \

¢™) iCloud Drive 7°% Applications

; o Deskto
/~: Applications - P
%) Daociiments

] Desktop

f&'ﬁ Dociiments

file system tree

directoryB2

O
<

Favori

<> &

0.0

®
e

Example: Directories (aka folders)

Term: directory

Def: a collection of files and directories

\ recursive because def contains term

N

| NON directoryB
< Bl=omo = #. =v 33 Q
. O O directoryC
Favori tes
— Goo — *o
<2 Dropbox < = 00 ol ZEv | R~ =" n
@ AirDrop Favorites
& Al My Files 32 Dropbox
< iCloud Drive @ AirDrop IXT
o\ icati :
#=; Applications E All My Files keep-going not-there-yet.txt
] Desktop
¢ iCloud Drive
™ Documents \
¢S iCloud Drive 7°% Applications

/~: Applications
] Desktop

f&ﬁ Dociiments

) Desktop
[Dac iments

file system tree

directoryB2

Example: Directories (aka folders)

Term: directory

\ recursive because def contains term

RN

Def: a collection of files and directories

| NON directoryB
< Bl=o o = % = T Q
O [NON directoryC
Favorites
< 33 Dropbox < P = 00 ol SRy X~ =v SV Q
~ . @) keep-going
@) AirDrop Favorites < = o = £ — *e Q
— — 000 v — *oe VvV
Favoril = Ajl my Files 22 Dropbox . S
22| & icioudor -
" ¢ iCloud Drive @ AirDrop Favorites
o\ icati
@ #/=; Applications @ All My Files :‘: Dropbox
] Desktop
8 ¢ iCloud Drive] (@) AirDrop
M) Documents
Y iCloud Drive /2; Applications @ All My Files directoryZ directoryZ-1 directoryZ-2 directoryZ-3
:/'.\". App]ications m Desktop Q iCloud Drive
) Desktop :/A\: Applications
™ Documents =] Desktop
IS NN

file system tree

Example: Directories (aka folders)

Term: directory

\ recursive because def contains term

N

Def: a collection of files and directories

| NON directoryB
< Bl=omo = #. =v 33V Q
O [NON directoryC
Favorites
4 32 Dropbox < L §'U]] “D% A - 2 =" 33V Q
keep-going
@ AirDl’Op Favorites < =i — []:D |[|:]]| r— # — PN Q
- — 000 v —_— W o VvV
Faverll 2 Ay Files 23 Dropbox — = 2
> & 4 . .
. < iCloud Drive @ AirDrop ERotites
o\ icati
@) | 7 Applications E All My Files | %% Dropbox
] Desktop
8 ¢ iCloud Drive] (@) AirDrop
™ Documents
™\ iCloud Drive /2 Applications @ All My Files directoryZ directoryZ-1 directoryZ-2 directoryZ-3
; o Deskto . .
:/._‘. App“catlons ﬁ P Q iCloud Drive
5 Desktop :/A\: Applications
f&ﬁ Documents ﬁ Desktop
IS NN

file system tree

Example: Directories (aka folders)

Term: directory

\ recursive because def contains term

N

Def: a collection of files and directories

| NON directoryB
< Bl=omo = #. =v 33V Q
O [NON directoryC
Favorites
4 32 Dropbox < L §'U]] “D% A - 2 =" 33V Q
keep-going
@ AirDl’Op Favorites < =i — []:D |[|:]]| r— # — PN Q
- — 000 v —_— W o VvV
Faverll 2 Ay Files 23 Dropbox — = 2
> & 4 . .
. < iCloud Drive @ AirDrop ERotites
o\ icati
@) | 7 Applications E All My Files | %% Dropbox
] Desktop
8 ¢ iCloud Drive] (@) AirDrop
™ Documents
™\ iCloud Drive /2 Applications @ All My Files directoryZ directoryZ-1 directoryZ-2 directoryZ-3
; o Deskto . .
:/._‘. App“catlons ﬁ P Q iCloud Drive
5 Desktop :/A\: Applications
f&ﬁ Documents ﬁ Desktop
IS NN

file system tree

Example: (simplified) JSON Format

Example JSON Dictionary:

{

“name”: *“alice”,
1 gradell : IIAII ,
“score”: 96

}

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict
Def: a set of json-mapping's
{
“name”: “alice”,
“grade”: "“A",
“score”: 96

}

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict
Def: a set of json-mapping's
{
“name”: “alice”,
“grade”: "“A",
“score”: 96

}

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict
Def: a set of json-mapping's
{
“name”: *“alice”,
“grade”: “A", Term: json-mapping
“score”: 96 Def: a json-string (KEY) paired with a

json-string OR json-number
OR json-dict (VALUE)

4 4

keys values

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict

Def: a set of json-mapping's

{

“name”: *“alice”, /

“grade”: “A", Term: json-mapping

“score”: 96 Def: a json-string (KEY) paired with a
} json-string OR json-number

json-dict (VALUE)

recursive self reference isn't always direct!

Example: (simplified) JSON Format

Example JSON Dictionary:

{

“name”: *“alice”,
“grade”: "“A",
“score”: 96,
“exams”: {
“midterm”: 94,
“final”: 98

Term: json-dict
Def: a set of json-mapping's

Term: json-mapping

Def: a json-string (KEY) paired with a
json-string OR json-number
OR json-dict (VALUE)

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict
Def: a set of json-mapping's
{
“name”: *“alice”,
“grade”: "“A",
“score”: 96,
“exams”: {

Term: json-mapping
Def: a json-string (KEY) paired with a
json-string OR json-number

“midterm”: {“points”:94, OR json-dict (VALUE)
“total”:100},

“final”: {“points”: 98,
“total”: 100}

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict
/ Def: a set of json-mapping's
{

“name”: *“alice”, ‘

“grade”: “A", Term: json-mapping

“score”: 96, ‘ Def: a json-string (KEY) paired with a
“exams” =/{ json-string OR json-number

“midtern”: f{“points”:94,@ OR json-dict (VALUE)
“total”:100},

“final” :/{ “points”: 98, ‘
“total”: 100}‘

Overview: Learning Objectives

Recursive information
e \What is a recursive definition/structure?
* Arbitrarily vs. infinitely

- Recursive code

.« What is recursive code?

Why write recursive code’ E
* Where do computers keep local variables for recursive calls?
What happens to programs with infinite recursion? E

Recursive Code

What is it?
e A function that calls itself (possible indirectly)

call

f "
\J g\/

call call

Recursive Code

What is it?
e A function that calls itself (possible indirectly)

call

/N

def f():
other code r]
f()

other code

call

Recursive Code

What is it?
e A function that calls itself (possible indirectly)

def g():
other code
def T(): Q(cher code
other code
0 def h():

other code # other code

g()

other code

Recursive Code

What is it?
e A function that calls itself (possible indirectly)

Motivation: don’t know how big the data is before execution
 Need either iteration or recursion
* |ntheory, these techniques are equally powerful

Recursive Code

What is it?
e A function that calls itself (possible indirectly)

Motivation: don’t know how big the data is before execution
 Need either iteration or recursion
* |ntheory, these techniques are equally powerful

Why recurse”? (instead of always iterating)
e In practice, often easier
e recursive code corresponds to recursive data
* reduce a big problem into a smaller problem

https://texastreesurgeons.com/services/tree-removal/

https://texastreesurgeons.com/services/tree-removal/

Recursive Students

OOOOO
O e renron P ©OOOOO

wise and benevolent *
teacher wearing a top hat

Recursive Students

Imagine:
A teacher wants to know how
many students are in a column.

What should each student ask
the person behind them? @ @ @ @ @
Constraints: @ @ @ @ @

e |tis dark, you can’t see the back
* You can’t get up to count How many

. tudents are |
» You may talk to adjacent students ~ |° "0 >0

 Mic is broken (students in back
can't hear from front)

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Students

Strategy: reframe question as “how
many students are behind you?”

how many are behind you? <

Example from https://courses.cs.washington.edu/courses/cse143/17au/

KOMOO

Recursive Students

Strategy: reframe question as “how
many students are behind you?”

Reframing is the hardest part

how many are behind you? <

Example from https://courses.cs.washington.edu/courses/cse143/17au/

KOMOO

Recursive Students

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody Is behind you: say O
else: ask them, say their answer+1

how many are behind you? <

Example from https://courses.cs.washington.edu/courses/cse143/17au/

KOMOO

Recursive Students

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody Is behind you: say O
else: ask them, say their answer+1

how many are behind you?

how many are behind you?

Example from https://courses.cs.washington.edu/courses/cse143/17au/

C
C

KOMOO

Recursive Students

how many are behind you?

Strategy: reframe question as “how
many students are behind you?”

how many are behind you?

how many are behind you?

Process:
if nobody Is behind you: say O
else: ask them, say their answer+1

how many are behind you?

how many are behind you?

/N NN

KOMOO

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Students "

Strategy: reframe question as “how
many students are behind you?”

how many are behind you?

how many are behind you?

Process:
if nobody Is behind you: say O
else: ask them, say their answer+1

how many are behind you?

how many are behind you?

AWAYAYAYA

KOMOO

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Students "

Strategy: reframe question as “how
many students are behind you?”

how many are behind you?

Process:
if nobody Is behind you: say O
else: ask them, say their answer+1

how many are behind you?

how many are behind you?

AWAYAYAYA

KOMOO

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Students

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody Is behind you: say O
else: ask them, say their answer+1

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Students

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody Is behind you: say O
else: ask them, say their answer+1

Example from https://courses.cs.washington.edu/cours

G
"G

e
S

g

Aha! Clearly there]>

must be 25 students
In this column

es/cse143/17au/

Recursive Students

Strategy: reframe question as “how
many students are behind you?”

Process:
if nobody Is behind you: say O
else: ask them, say their answer+1

Observations:
e Each student runs the same “code”’
e Each student has their own “state”

Example from https://courses.cs.washington.edu/cours

20<

>

O
~©

g

Aha! Clearly there]>

must be 25 students
In this column

es/cse143/17au/

Practice: Reframing Factorials

Nl =1x2x3x... x(N-2)x(N-1) x N

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1

21 = 1%2 = 2

31 = 1*%2*3 = 6

4l = 1*2%3%4 = 24 4. Python Code:

Sl = l¥2%3%a%5 = 120 def fact(n):

2. Self Reference: pass # TODO

Goal: work from examples to get to recursive code

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1

21 = 1*2 = 2

31 = 1%2*3 = 6

4l = 1*2%3%4 = 24 4. Python Code:

51 = 1%2%3%4%5 = 120

def fact(n):
2. Self Reference: pass # TODO

ook for patterns that allow
rewrites with self reference

Example: Factorials

1. Examples: 3. Recursive Definition:

1t =1

21 = 1*2 = 2

31 = 1*%2%3 = 6

4! = 1%2%3%4 = 24 4. Python Code:
(5!;1*2*3*4*5 = 120 def fact(n):

2. Self Reference: pass # TODO

ook for patterns that allow
rewrites with self reference

Example: Factorials

1. Examples: 3. Recursive Definition:

1t =1

21 = 1%2 = 2

31 = 1*%2%3 = 6

4! = 1%2%3%4 = 24 4. Python Code:
(5!;1*2*3*4*5 = 120 def fact(n):

2. Self Reference: pass # TODO

1! =

21 =

31 =

41 =

51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1

21 = 1*2 = 2

31 = 1*2%3 = 6

41 = 1%2%3%4 = 24 4. Python Code:

51 = 1%2%3%4%5 = 120

def fact(n):
pass # TODO

2. Self Reference:
1!
21
3!
4!
51

41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1

21 = 1*2 = 2

31 = 1*2%3 = 6

41 = 1%2%3%4 = 24 4. Python Code:

51 = 1%2%3%4%5 = 120

def fact(n):

2. Self Reference: pass # TODO
1! =

21 =

31 =

41 = 31 * 4

51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1

21 = 1%2 = 2

31 = 1*%2*3 = 6

4l = 1*2%3%4 = 24 4. Python Code:
Sl = l¥2%3%a%5 = 120 def fact(n):

2. Self Reference: pass # TODO
1! =

21 = 11 * 2

31 =21 * 3

41 = 31 * 4

51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1

21 = 1%2 = 2

31 = 1%2*3 = 6

41 = 1*2*3%4 = 24 4. Python Code:
Sl = l¥2%3%a%5 = 120 def fact(n):

2. Self Reference: pass # TODU
1! = 1 dontneed a pattern

2! = 1! * 2 atthe start

31 =21 * 3

41 = 31 * 4

51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1 convert self-referring examples
20 = 1*2 = 2 to a recursive definition

3! = 1*%2*3 = 6

41 = 1*2*3%4 = 24 4. Python Code:

5! = 1#2%3%4*5 = 120

def fact(n):

2. Self Reference: pass # TODO
1! =1

21 = 11 % 2

31 = 21 * 3

41 = 31 * 4

51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 = 1 11is1

21 = 1%2 = 2

31 = 1%2*3 = 6

4l = 1*2%3%4 = 24 4. Python Code:

51 = 1%2%3%4%5 = 120

def fact(n):

2. Self Reference: pass # TODO

1! =1

2! = 11 * 2
3! = 2! * 3
4\ = 3! * 4
5! = 4! * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 = 1 11is1
21 = 1%2 = 2 N!Iig?22?27? for N>1

3! = 1*2*%3 = 6
41 = 1*2%3*4 = 24
5! = 1*2%3*4+*5 = 120

4. Python Code:

def fact(n):

2. Self Reference: pass # TODO

LS S
21 = 11 % 2
31 = 21 % 3
41 = 31 * 4
51 = 41 * 5 |

Example: Factorials

1. Examples: 3. Recursive Definition:
11 1 11is1
21 1%2 = 2 N!Iis (N=1)! * N for N>1

31 = 1%2%3 = 6
41 = 1*2*3%4 = 24 4. Python Code:
51 = 1%2%3%4*5 = 120

def fact(n):

2. Self Reference: pass # TODO

T
20 = 11 * 2
131 = 21 % 3
41 = 31 % 4
{51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 = 1 1!11s1
21 = 1%2 = 2 N!Iis (N=1)! * N for N>1
31 = 1*%2*3 = 6
4l = 1*2%3%4 = 24 4. Python Code:
| = —
o1 1%2%3%4%5 120 def fact(n):
2. Self Reference: pass # TODO
1! =1
21 = 11 % 2
31 = 21 * 3
41 = 31 * 4
51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1 11is1

21 = 1%2 = 2 N!Iis (N=1)! * N for N>1
3! = 1*2*%3 = 6

4l = 1%2*3*4d = 24 4. Python Code:

51 = 1#2*3*%4*5 = 120

def fact(n):
1T n ==

2. Self Reference:
return 1

1! =1

2! = 11 * 2
3! = 2! * 3
4V = 31 * 4
5! = 4! * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 = 1 11is1
21 = 1%2 = 2 N!Iis (N=1)! * N for N>1
31 = 1%2%3 = 6
4! = 1*2*3*4 = 24 4. Python Code:
> = Lr2wswaxs = 120 def fact(n):
2. Self Reference: 1T n ==
return 1
1! =1 = fact(n-1)

return n s p

2! = 11 * 2
3! = 2! * 3
4V = 31 * 4
5! = 4! * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 = 1 11is1
21 = 1%2 = 2 N!Iis (N=1)! * N for N>1
31 = 1%2%3 = 6
4l = 1*2%3%4 = 24 4. Python Code:
Sl = l¥2%3%a%5 = 120 def fact(n):
2. Self Reference: 1T n ==
return 1
11 = 1 = fact(n-1)
21 = 11 * 2 return n x p
31 = 21 * 3
41 = 31 * 4 Let’'s “run” it!
5! = 41 * 5

Tracing Factorial fact(n=4)

somebody

called fact(4)
def fact(n):
1T n ==
return 1
p =fact(n-1)
return n x p

Note, this is not a stack frame!
We're tracing code line-by-line.
Boxes represent which invocation.

Tracing Factorial fact(n=4)

ifn==1:

ef fact(n):
1T n == 1:
return 1

p =fact(n-1)
return n % p

Tracing Factorial fact(n=4)

ifn==1:

def fact(n):
1T n ==
return 1
n =fact(n-1)
return n % p

Tracing Factorial fact(n=4)

ifn==1:

fact(n=3)

def fact(n):
1T n ==
return 1
n =fact(n-1)
return n % p

Tracing Factorial fact(n=4)

ifn==1:

fact(n=3)
ifn==1:

ef fact(n):
1T n == 1:
return 1

p =fact(n-1)
return n % p

Tracing Factorial fact(n=4)

ifn==1:

fact(n=3)
ifn==1:

def fact(n):
1T n ==
return 1
n =fact(n-1)
return n % p

Tracing Factorial fact(n=4)

fn==1:
fact(n=3)
fn==1:
def fact(n): fact(n=2)
1T n ==
return 1
n =fact(n-1)

return n % p

Tracing Factorial fact(n=4)

fn==1:
fact(n=3)
fn==1:
ef fact(n): fact(n=2)
if n==1: fn==1
return 1
n =fact(n-1)

return n % p

Tracing Factorial fact(n=4)

fn==1:
fact(n=3)
fn==1:
def fact(n): fact(n=2)
if n==1: fn==1
return 1
n =fact(n-1)

return n % p

Tracing Factorial fact(n=4)

ifn==1:

fact(n=3)

ifn==1:
def fact(n): fqﬁﬂqf?).
if n == 1: ifn==1:
return 1 fact(n=1)

p =fact(n-1)
return n % p

Tracing Factorial fact(n=4)

ifn==1:
fact(n=3)
ifn==1:
ef fact(n): f??““=2),
if n == 1: Th==1
return 1 fact(n=1)

n =fact(n-1)

ifn==1:
return n % p

Tracing Factorial fact(n=4)

itn==1:
fact(n=3)
fn==1:
def fact(n): fact(n=2)
if n == 1° ifn==1:
return 1 fact(n=1)
p =fact(n-1) ifn==1:

return n x p return 1

Tracing Factorial fact(n=4)

ifn==1:
fact(n=3)
fn==1:
def fact(n): fact(n=2)
if n==1: fn=="1
return 1 fact(n=1)
*p = fact(n-1) ifn==1:
return n x p return 1
P = 1 4/

Tracing Factorial fact(n=4)

ifn==1:
fact(n=3)
ifn==1:
def fact(n): fact(n=2)
if n == 1° ifn==1:
return 1 fact(n=1)
n =fact(n-1) ifn==1
* return n * p return 1
p = 1 4/
return 2

Tracing Factorial fact(n=4)

itn==1:
fact(n=3)
fn==1:
def fact(n): fact(n=2)
if n == 1° ifn==1:
return 1 fact(n=1)
*p = fact(n-1) ifn==1:
return n x p return 1
p = 1 4/
return 2
p = 2 4/

Tracing Factorial factin=4)
fact(n=3)
fn==1:
def fact(n): fact(n=2)
if n == 1° ifn==1:
return 1 fact(n=1)
n = fact(n-1) ifn==1:
* return n x p return 1
p = 1 4/
return 2
p = 2 4/
return 6

Tracing Factorial factin=4)
fact(n=3)
fn==1:
def fact(n): fact(n=2)
if n == 1° ifn==1:
return 1 fact(n=1)
*p = fact(n-1) ifn==1:
return n x p return 1
p = 1 4/
return 2
p i 2 4/
return 6
06+

Tracing Factorial factin=4)
fact(n=3)
fn==1:
def fact(n): fact(n=2)
return 1 fact(n=1)
n = fact(n-1) ifn==1:
* return n x p return 1
p = 1 4/
return 2
p = 2 4/
return 6
p-6<
return 24

Tracing Factorial factin=4)
fact(n=3)
ifn==1:
def fact(n): fact(n=2)
lf n == : fn==1:
return 1 fact(n=1)
n =fact(n-1) ifn==1:
return n x p return 1
p = 1 4/
return 2
p i 2 4/
return ©
P64
return 2'4

<

S

Tracing Factorial facinM
fact(n=3)
It N :’:\11
def fact(n): fac(n=2)
if n==1: f==1
return 1 fact(n=1)
p =fact(n-1) == 1:
return n x p return 1
o=+ 1
return 2
02
How does Python keep urn 6
all the variables separate? @ 6
urn 24

S

Tracing Factorial facinM
fact(n=3)
It N :’:\11
def fact(n): fact(n=2)
if n==1: f==1
return 1 fact(n=1)
p =fact(n-1) == 1:
return n x p return 1
o=+ 1
return 2
02
How does Python keep urn 6
all the variables separate? @ 6
urn 24

frames to the rescue!

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple
invocations share code.

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple
invocations share code.

Variables for an invocation exist in a frame

frame: | variables

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple
invocations share code.

Variables for an invocation exist in a frame
 the frames are stored in the stack

frame: variables stack: active

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple
invocations share code.

Variables for an invocation exist in a frame
 the frames are stored in the stack
* One invocation is active at a time: its frame is on the top of stack

pop!
I | T~
frame: | variables stack: active

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple
invocations share code.

Variables for an invocation exist in a frame
 the frames are stored in the stack

* One invocation is active at a time: its frame is on the top of stack

* if a function calls itself, there will be multiple frames at the same
time for the multiple invocations of the same function

I | fact
frame: | variables stack: fact

fact
fact
global

Deep Dive: def fact(n):

Runtime Stack R
p =fact(n-1)

return n x p

Current
Runtime Stack

0 1 2 3 4 5

time

Deep Dive: def fact(n):

Runtime Stack R
p =fact(n-1)

return n x p

call fact(3)

Current
Runtime Stack

0 1 2 3 4 5

time

Deep Dive: mp def fact(n):
Runtime Stack T

return 1
p =fact(n-1)
return n x p

Current
Runtime Stack

v

fact _
n=3 new, active frame

/
global global

0 1 2 3 4 5

time

Deep Dive: def fact(n);
Runtime Stack T

return 1
p =fact(n-1)
return n x p

fact
n=3
p =

global global

0 1 2 3 4 5

time

Deep Dive: mp def fact(n):
Runtime Stack T

return 1
p =fact(n-1)
return n x p

fact

n=2
fact fact
Nn=3 n=3
P= P=

global global global

0 1 2 3 4 5

time

Deep Dive: def fact(n):
Runtime Stack T

return 1
p =fact(n-1)
return n x p

fact

n=2
fact fact
Nn=3 n=3
P= P=

global global global

0 1 2 3 4 5

time

Deep Dive: mp def fact(n):

: LT n == 1:
RUﬂtIme StaCk) nretur‘n 1

p =fact(n-1)
return n x p

fact

n=1

fact fact

n=2 n=2
P= P=

fact fact fact

n=3 N=3 n=3
P= P= P=

Deep Dive: def fact(n):
- LT n == 1:
RUﬂtIme StaCk * : nr‘e’cur‘n 1

n =fact(n-1)
return n x p

fact
n=1 return 1 (base case)
fact fact
n=2 n=2
P= P=
fact fact fact
n=3 N=3 n=3
P= P= P=

global global global global

0 1 2 3 4 5

Deep Dive:

Runtime Stack

def fact(n):
1T n ==
return 1
n =fact(n-1)
return n x p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2
P= P= P=
fact fact fact fact
n=3 n=3 n=3 n=3
P= P= o= p=
global global global global
0 1 2 3 4 ®

Deep Dive:

Runtime Stack

def fact(n):

1t n ==
return 1
n =fact(n-1)

*return n xp

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2
P= P= p=1
fact fact fact fact
n=3 n=3 n=3 n=3
P= P= o= p=
global global global global
0 1 2 3 4 ®

Deep Dive: def fact(n):

Runtime Stack R
p =fact(n-1)

*return n xp

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
P= P= p=1
fact fact fact fact
n=3 n=3 n=3 n=3
P= P= P= P=

Deep Dive:
Runtime Stack

def fact(n):
1t n ==
return 1
n =fact(n-1)
return n *x p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
P= P= p=1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3
P= P= P= o= o=
global global global global global
0 1 2 3 4 S ®

Deep Dive:

Runtime Stack

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
P= P= p=1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3
p= p= p= o= p=2
global global global global global
0 1 2 3 4 S

def fact(n):

1T n ==
return 1
n =fact(n-1)

*return n x p

Deep Dive:

Runtime Stack

>

def fact(n):
1f

return 1
p =fact(n-1)
return n x p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
P= P= p=1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3 return 6 (n*p)
p= p= p= p= p=2 1
global global global global global
0 1 2 3 4 S ®

Deep Dive:
Runtime Stack

def fact(n):
1t n ==
return 1

p =fact(n-1)
return n x p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
P= P= p=1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3 return 6 (n*p)
p= p= p= p= p=2 1
global global global global global global
0 1 2 3 4 ® ®

“Infinite” Recursion Bugs

What happens if:

def fact(n):
1t n ==
return 1
p =fact(n-1)
return n % p

“Infinite” Recursion Bugs

What happens if:
e we forgot the “n == 1" check?

def fact(n):

1f N —— 1
T 1=

return—1
p =fact(n-1)
return n % p

“Infinite” Recursion Bugs

What happens if:
e we forgot the “n == 1" check?
e factorial is called with a negative number?
]

def fact(n):

1f N —— 1
—

| e W

return—1
p =fact(n-1)
return n % p

“Infinite” Recursion Bugs

What happens if:
e we forgot the “n == 1" check?
e factorial is called with a negative number?

f‘-‘l

fact

X

never = fact
terminates

“Infinite” Recursion Bugs

What happens if:
e we forgot the “n == 1" check?
e factorial is called with a negative number?

f‘-‘l

fact
fact
\ n=2
never p = fact fact
terminates n=3

global

“Infinite” Recursion Bugs

What happens if:
e we forgot the “n == 1" check?
e factorial is called with a negative number?

f‘-‘l

fact

X

never n = fact
terminates

fact
n=-1

fact
n=0

fact
Nn=1

fact
n=2

fact
n=3

global

“Infinite” Recursion Bugs

What happens if:
e we forgot the “n == 1" check?
e factorial is called with a negative number?

f‘-‘l

fact

X

never n = fact
terminates

StackOverflowError

fact
n=-2

fact
n=-1

fact
n=0

fact
Nn=1

fact
n=2

fact
n=3

global

Coding Demos

Demo 1: Pretty Print

Goal: format nested lists of bullet points

Input:
e The recursive lists

Output:
* Appropriately-tabbed items

Example:

>>> pretty print([“a”, “i-, *“2", *3",1,
“B", [“4", [“i", “ii"]]1])

*A

*]1

* 2

*3
*B

*4

Demo 2: Recursive List Search

Goal: does a given number exist in a recursive structure?

Input:
e A number
e A list of numbers and lists (which contain other numbers and lists)

Output:
e True if there’s a list containing the number, else False

Example:

>>> contains(3, [1,2,[4,[[31,[8,911,5,611)
True

>>> contains(12, [1,2,[4,[[31,[8,911,5,611)
False

Conclusion: Review Learning Objectives

Learning Objectives: Recursive Information

What is a recursive definition/structure?
* Definition contains term
e Structure refers to others of same type
* Example: a dictionary contains dictionaries (which may contain...)

/ recursive case

‘ base case

Learning Objectives: Recursive Code

What is recursive code?
* Function that sometimes itself (maybe indirectly)

Why write recursive code?
 Real-world data/structures are recursive; intuitive for code to reflect data

Where do computers keep local variables for recursive calls?
* [n a section of memory called a “frame”
* Only one function is active at a time, so keep frames in a stack

What happens to programs with infinite recursion?
* (Calls keep pushing more frames
* Exhaust memory, throw StackOverflowError

Questions?

YOUR PARTY ENTERS THE TAVERN.

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

M

https://xkcd.com/244/

