[301] Error Handling

Tyler Caraza-Harter

Learning Objectives Today

How to crash more
® turn semantic bugs into runtime bugs with assert

How to crash less
e catch exceptions with try/except

https://en.wikipedia.org/wiki/Pizza

https://en.wikipedia.org/wiki/Pizza

Example: Pizza Analyzer

import math

def pizza size(radius):
return (radius =k 2) * math.pi

def slice_size(radius, slice_count):
total size = pizza_size(radius)
return total_size x (1 / slice_count)

def main():
for i in range(10):
grab input
args = input("Enter pizza diameter(inches), slice count): ")
args = args.split(',")
radius = float(args[@] strip()) / 2
slices = int(args[1].strip())

plzza analysis

size = slice_size(radius, slices)

print('PIZZA: radius=1{}, slices={}, slice square inches=1{}'
. format(radius, slices, size))

main()

https://github.com/tylerharter/caraza-harter-com/blob/master/tyler/cs30|/fall | 9/materials/code/lec-26/old_pizza.py

https://github.com/tylerharter/caraza-harter-com/blob/master/tyler/cs301/fall19/materials/code/lec-26/old_pizza.py

Example: Pizza Analyzer

import math
Exercise: what are possible bad

inputs for

def pizza_size(radius): .
e diameter

return (radius =k 2) x math.pi

® slice count
e other!?

def slice size(radius, slice_count):
total size = pizza_size(radius)

return total_size x (1 / slice_count) Does it cause a runtime error or
semantic error?

def main():
for i in range(10):
grab 1nput
args = input("Enter pizza diameter(inches), slice count): ")
args = args.split(',")
radius = float(args[@] strip()) / 2
slices = int(args[1].strip())

pizza analysis

size = slice_size(radius, slices)

print('PIZZA: radius=1{}, slices={}, slice square inches=1{}'
. format(radius, slices, size))

main()

https://github.com/tylerharter/caraza-harter-com/blob/master/tyler/cs30 | /fall | 9/materials/code/lec-26/old_pizza.py

https://github.com/tylerharter/caraza-harter-com/blob/master/tyler/cs301/fall19/materials/code/lec-26/old_pizza.py

Assert

Syntax:
assert BOOLEAN EXPRESSION

Purpose:

Force program to crash if something is non-sensible, rather than run and
produce garbage.

runtime errors
(easier to debug)

semantic errors
(hard to debug)

Assert Warning: sometimes people disable
assertions when running your code

to improve performance

Syntax:

assert BOOLEAN EXPRESSION

True False

Crash!

nothing happens Enter pizza diameter(inches), slice count): -10, 8
Traceback (most recent call last):
File "pizza.py", line 24, in <module>

main()
File "pizza.py", line 20, in main
size = slice size(radius, slices)

File "pizza.py", line 8, in slice size
total size = pizza size(radius)
File "pizza.py", line 4, in pizza size
assert(radius > 0)
AssertionError

Assert

Syntax:

assert BOOLEAN EXPRESSION

Examples: Pizza Example: add asserts to crash upon
® diameter <=0

® slicess<=0
assert x > 0

assert items != None

assert “age” 1n person

I
Il

assert len(nums) % 2

What It we want to keep running even
f there Is an error?

Try/Except

Syntax:

flaky function()

Try/Except

Syntax:

try:
flaky function()
except:
print(“error!”) # or some other handling

Try/Except

Syntax:

try:
flaky function()
except:
print(“error!”) # or some other handling

Description:

try and except blocks come in pairs (runtime errors are “exceptions”)

Try/Except

Syntax:
try:

flaky function()
except:

print(“error!”) # or some other handling
Description:
try and except blocks come in pairs (runtime errors are “exceptions”)

Python tries to run the code in the try block. If there’s an exception,
it just runs the except block (instead of crashing). This is called
the exception.

If there is no exception, the except block does not run.

Try/Except

Pizza Example: try/except to continue running
upon

® parse errors

SyntaX: ® analysis errors

try:
flaky function()
except:

print(“error!”) # or some other handling
Description:

try and except blocks come in pairs (runtime errors are “exceptions”)

Python tries to run the code in the try block. If there’s an exception,

it just runs the except block (instead of crashing). This is called
“catching” the exception.

If there is no exception, the except block does not run.

Exceptions are Exceptions
to Regular Control Flow

try:
print("2 inverse is", 1/2)
print("1l inverse 1s", 1/1)
print("® inverse 1is", 1/0)

i never runs

print("that's all, folks!™)

Exceptions are Exceptions H

to Regular Control Flow

def buggy():
print("buggy: about to fail")

print("buggy: infinity is ", 1/0)
print("buggy: oops!") # never prints

def gQ):
print("g: before buggy")
buggy ()
print("g: after buggy") # never prints
def f(O):
try:
print("f: let's call g")
g()
print("f: g returned normally") # never prints
except:

print("f: that didn't go so well")

fO

Exceptions are Exceptions H

to Regular Control Flow

def buggy(Q):
print("buggy: about to fail™")

print("buggy: infinity is ", 1/0)
print("buggy: oops!") # never prints

def g(Q):
print("g: before buggy™)

try:

buggy O
except:

print("g: caught an exception from buggy")
print("g: after buggy")

def fQ):
try:
print("f: let's call g")
g
print("f: g returned normally™) g catches, so f never !<nows
except: about the exception

print("f: that didn't go so well")

fO

What If we want to know
the reason for the exception?

Crash Cause

Version |:

try:
flaky function()
except:
print(“error!”) # or some other handling

Version 2:

get exception object

try: describing the problem
flaky function()

except Exception as e:
print (“error because:”, str(e))

Crash Cause

e is of type Exception (very general)
Version 2: (there are different types of exceptions)

get exception object

try: describing the problem
flaky fynction()

except Exception as e:
print (“error because:”, str(e))

CraSh Cause Pizza Example: print failure reasons

® for parse errors

® for analysis errors

e is of type Exception (very general)
Version 2: (there are different types of exceptions)

get exception object
describing the problem

try:

flaky f nction()//
except Exception as e:

print (“error because:”, str(e))

K why it failed

WWh

cer

alr

at |

f we only want to catch
exceptions!

Narrow Catching

Version 2:

try:
flaky function()
except Exception as e:
print (“error because:”, str(e))

Version 3:

try:
flaky function()

except (ValueError, IndexError) as e:
print (“error because:”, str(e))

Narrow Catching

Version 3:

only catch these two

try: [(not NameError and others)

flaky function()
except (ValueError, IndexError) as e:
print (“error because:”, str(e))

Narrow CatCh i ng Pizza Example: catch only real parse errors

® strings when want ints

® not enough values
® NOT typos in variable names

Version 3:

only catch these two

try: ((not NameError and others)

flaky function()
except (ValueError, IndexError) as e:
print (“error because:”, str(e))

General Rule: always catch specific types of exceptions,
and/or make sure the user knows there was an error
(unexpected silent errors are the worst!)

Exception Hierarchy

Documentation: https://docs.python.orqg/3/librarvy/

exceptions.html#exception-hierarchy

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratoreExit
+-- Exception
+-- StopIteration
+-- StopAsynclteration
+=-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +=-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-=- EOFError
+-- ImportError
| +-- ModuleNotFoundError
+=-= LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+=-= OSError
+=-- BlockingIOError
+-- ChildProcessError
+-- ConnectionError
| +-- BrokenPipeError
| +-- ConnectionAbortedError
| +-- ConnectionRefusedError
| +-- ConnectionResetError screen Shot
+-- FileExistsError
+-- FileNotFoundError °
+-- InterruptedError f h I e ra rc h
+-- IsADirectoryError o y
+-- NotADirectoryError
+-- PermissionError
+-- ProcessLookupError
+=-- TimeoutError
+-- ReferenceError
+=-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+== ValueError
| +=-=- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

https://docs.python.org/3/library/exceptions.html#exception-hierarchy
https://docs.python.org/3/library/exceptions.html#exception-hierarchy
https://docs.python.org/3/library/exceptions.html#exception-hierarchy

What If we want t

kind of error! (not

O

broduce a specific

L

st an assert)

Custom Errors

BaseException
+-- ExXception
+—-— ArithmeticError

+-- FloatingPointError

+—— OverflowError

+-— ZeroDivisio
+-—- AssertionError
+-— AttributeExgor

+—-— TypeError

+-—- ValueError

Yror

Asserts vs. Raising Exception Objects

Version | (quick and dirty):

def pizza size(radius):
assert type(radius) in (float, int)
return (radius ** 2) * math.pi

Version 2 (more robust and informative):

def pizza size(radius):
1f type(radius) not in (float, int):
raise TypeError(”need a numeric type”)

retur (radlus *% 2) *‘Q?th.pl
with this message

tell Python th|s exception

occurred here create TypeError object

Asserts vs. Raising Exception Objects

Pizza Example:

Version | (quick and dirty): ® raise TypeError

def pizza size(radius):
assert type(radius) 1n (float, int)
return (radius ** 2) * math.pi

Version 2 (more robust and informative):

def pizza size(radius):
1f type(radius) not in (float, int):
raise TypeError(“need a numeric type”)

retur (radlus *% 2) *‘ﬁfth.pl
with this message

tell Python thls exception

occurred here create TypeError object

Summary

Asserts
® force a crash/exception
® better to crash in an obvious way than to use corrupt data

Exceptions
® produce them with
® catch them with
® can choose specific types of exceptions

General Rule: always catch specific types of exceptions,
and/or make sure the user knows there was an error
(unexpected silent errors are the worst!)

