[301] Web 1

Tyler Caraza-Harter

Learning Objectives Today

Network basics

- IP addresses
- host/domain names
- client/server and request/response

HTTP basics

- URLs
- GET/POST/etc
- headers
- status codes

Requests modules

- downloading data with requests.get
- remote calls with requests.post

Learning Objectives Today

Motivation

Networking Basics

HTTP (Hypertext Transfer Protocol)

Requests Module

Data Science and the Internet

There are tons of online sources of data

• Examples: <u>https://tyler.caraza-harter.com/cs301/spring19/datasets.html</u>

Wide range of topics

- healthcare
- roads and city planning
- astronomy
- population
- business
- entertainment
- education
- etc

Data Science and the Internet

There are tons of online sources of data

• Examples: <u>https://tyler.caraza-harter.com/cs301/spring19/datasets.html</u>

Wide range of topics

- healthcare
- roads and city planning
- astronomy
- population
- business
- entertainment
- education
- etc

Why not just download data by hand?

[\$]

BOUNDARIES

لريا NEIGHBORHOODS &

PROPERTY

{O}

CITY FACILITIES & INFRASTRUCTURE

(⇒)

PROJECTS & PLANS

HEALTH & PUBLIC SAFETY

Ē

TRANSPORTATION

血

EFFECTIVE

SUSTAINABILITY

Motivation I: too much data

What if you're analyzing language trends over time?

- Dataset: Project Gutenberg has 57K free books
- Too much work to download one by one

Motivation 2: data doesn't always come in files

Many datasets are difficult to download complete

Instead, you can make function calls to servers (we'll learn how) to grab specific data

- Dataset: OpenStreetMap
- You issue calls to get specific data:
 - I. specify latitude/longitude rectangle
 - 2. specify structures of interest (e.g., bike paths)

Learning Objectives Today

Motivation

Networking Basics

HTTP (Hypertext Transfer Protocol)

Requests Module

computer I

computer 2

Computers communicate over a network (e.g., the Internet) by sending messages to each other

computer 2

Computers communicate over a network (e.g., the Internet) by sending messages to each other

Computers communicate over a network (e.g., the Internet) by sending messages to each other

computer 2

Computers communicate over a network (e.g., the Internet) by sending messages to each other

server

computer 2

Computers communicate over a network (e.g., the Internet) by sending messages to each other

computer I

computer 2

Challenge: there are millions of computers. How do we indicate which machine should get our request?

How do we send a letter?

put address on the envelope

trust postal service to get letter to that address

Internet Protocol

computer 2

Solution: every machine* has an IP address (Internet Protocol). Requests are sent to a specific IP address.

*some machines have more multiple addresses

Internet Protocol

computer 2

Solution: every machine* has an IP address (Internet Protocol). Requests are sent to a specific IP address.

*some machines have more multiple addresses

Internet Protocol

computer 2

Challenge: it's hard to remember IP addresses. Imagine you had to type a number instead of www.google.com!

Domain Names

computer 2

Solution: use "nicknames" (called domain names) for IP addresses of machines that serve data

Domain Names

computer 2

Solution: use "nicknames" (called domain names) for IP addresses of machines that serve data

address: 18.216.110.65

computer 2

Challenge: there may be multiple programs running on each computer. How do we get the messages to the right program?

address: 18.216.110.65

computer 2

Solution: give each program a unique ID (called a "port number")

(like apartment numbers)

address: 18.216.110.65

computer 2

Solution: specify port number in request

computer 2

Solution: specify port number in request

depends on application! (video chat, web browsing, etc)

we'll only consider web applications for this semester

Learning Objectives Today

Motivation

Networking Basics

HTTP (Hypertext Transfer Protocol)

Requests Module

program B Python

computer I

Protocol for communicating web data

• downloading a specific webpage, image, etc

domain: <u>example.com</u> address: 12.34.56.78

computer 2

Note: we won't talk about HTTPS today, which is HTTP with encryption

Protocol for communicating web data

• downloading a specific webpage, image, etc

Protocol for communicating web data

• downloading a specific webpage, image, etc

Protocol for communicating web data

• downloading a specific webpage, image, etc

Protocol for communicating web data

• downloading a specific webpage, image, etc

Protocol for communicating web data

• downloading a specific webpage, image, etc

3. resource (file name)

We need three things:

- I. domain name
- 2. port number
- 3. resource (file name)

We need three things:

I. domain name

URL

- 2. port number
- 3. resource (file name)

https://en.wikipedia.org:443/wiki/URL

We need three things:

- I. domain name
- 2. port number
- 3. resource (file name)

URL -
domain name resource https://en.wikipedia.org:443/wiki/URL port

We need three things:

- I. domain name
- 2. port number
- 3. resource (file name)

URL -

URLs

domain name resource https://en.wikipedia.org/wiki/URL

port would have defaulted to 443 if not specified

We need three things:

- I. domain name
- 2. port number
- 3. resource (file name)

URL -

HTTP

Protocol for communicating web data

• downloading a specific webpage, image, etc

HTTP

Protocol for communicating web data

• downloading a specific webpage, image, etc

HTTP

Protocol for communicating web data

• downloading a specific webpage, image, etc

Request and Response Headers

HTTP Request: GET /about.html HTTP/1.1 Host: example.com User-Agent: ... Accept: */*

Request and Response Headers

Request and Response Headers

Learning Objectives Today

Motivation

Networking Basics

HTTP (Hypertext Transfer Protocol)

Requests Module

Requests module

Purpose

- easily send requests to a server and parse the response
- "HTTP for Humans[™]"

Installation

• install:

pip install requests

Using it

• just import:

import requests

import requests

url = "https://tyler.caraza-harter.com/hello.txt"

requests.get(url)

import requests

url = "https://tyler.caraza-harter.com/hello.txt"

requests.get(url)

sends a **GET** request to <u>tyler.caraza-harter.com</u>, asking for the contents of the **/hello.txt** page

import requests

resp = requests.get(url)

url = "https://tyler.caraza-harter.com/hello.txt"

put response from <u>tyler.caraza-harter.com</u> in the resp variable

import requests

url = "https://tyler.caraza-harter.com/hello.txt"

```
resp = requests.get(url)
```

make sure we got 200 (success) back
assert(resp.status_code == 200)

import requests

url = "https://tyler.caraza-harter.com/hello.txt"

resp = requests.get(url)

resp.raise_for_status() # shortcut

import requests

url = "https://tyler.caraza-harter.com/hello.txt"

```
resp = requests.get(url)
```

resp.raise_for_status() # shortcut
print(resp.text) # "Hello! Welcome to my website."

JSON Responses

import requests, json

```
url = "https://tyler.caraza-harter.com/scores.json"
resp = requests.get(url)
```

```
scores = json.loads(resp.text)
```


JSON Responses

import requests, json

url = "https://tyler.caraza-harter.com/scores.json"
resp = requests.get(url)

scores = json.loads(resp.text)
scores = resp.json() # shortcut

Demo I: reddit bot

Goal: fetch titles from a subreddit

```
1 r = requests.get("https://www.reddit.com/r/UWMadison.json")
```

```
2 r.raise_for_status()
```

```
3 page = r.json()
```

```
4 for child in page["data"]["children"]:
```

```
print(child["data"]["title"])
```



```
[Mod Post] /r/UWMadison feedback thread
Any other aquariums on campus besides the one in Birge Hall?
Is there any way to get an Access mental health appointment within a week?
Intermediate/Advanced 3-4 Credit L+S Class Recommendation
Looking for an artist/band to play a house show
Lost my wallet
Looking for Fall2020 semester short term lease
Odds I get into Madison
Looking for an easy study abroad summer program
When would we know which sections Professors are teaching
Does anyone have experience in MS Biology programs?
Question
```

Let's not all hit reddit at once (feel free to use these snapshots):

https://tyler.caraza-harter.com/cs301/fall19/materials/code/lec-31/python.json

https://tyler.caraza-harter.com/cs301/fall19/materials/code/lec-31/UWMadison.json

Demo 2: Madison bus alerts

Goal: get text of all outstanding alerts

```
1 r = requests.get("http://transitdata.cityofmadison.com/GTFS-RealTime/TrapezeRealTimeFeed.json")
2 d = r.json()
3
4 for row in d["entity"]:
5 if row["alert"] != None:
6 print(row["alert"]["description_text"]["translation"][0]["text"])
```


Trips temporarily stop on the west side of N Mills, north of W Johnson-thru Nov 12 Trips skip stops along Lien, between E Washington and Thierer-thru Nov 17 @ https://bit.ly/2xuxUUD Trips skip stops along Dempsey, Davies and Buckeye, between Cottage Grove & USH 51-thru Nov 15 @ https://bit.ly/2QQnr f7 Trips serve stop along W Johnson at Mills, between Charter & Lake-thru Nov @ https://bit.ly/2I6g5fu

Trips skip stops along Packers & First, between Commercial & E Washington-thru Nov 13 Trips temporarily stop on the west side of N Sherman, north of Roxbury-thru Jul 2020 Trips skip some stops west of Park & south of University (via Mills)-thru 2020 @ https://bit.ly/2Z62YdU Trips skip stops along Broadway, between Bridge & Hoboken-thru Nov

Let's not all hit Madison at once (feel free to use this snapshot):

https://tyler.caraza-harter.com/cs301/fall19/materials/code/lec-31/TrapezeRealTimeFeed.json

Demo 3: State Populations

Goal: fetch population data for all states and provide summary stats

Input:

- List of state files: <u>https://tyler.caraza-harter.com/cs301/fall19/materials/</u> <u>code/lec-31/data/state_files.txt</u>
- The 50 JSON files

Output:

• Stats about population: mean, max, min, etc

Bonus! "cache" results to make reruns of notebook faster

In [19]: df.describe().astype(int)

Out[19]:

	2000	2010	2015
count	50	50	50
mean	5616996	6162876	6364951
std	6185579	6848235	7152085
min	493782	563626	584304
25%	1735533	1833004	1857308
50%	4026890	4436369	4530803
75%	6281944	6680312	6986155
max	33871648	37253956	38792291