[301] Randomness

Tyler Caraza-Harter

Which series was randomly generated?
Which did | pick by hand!?

Announcement |: Recommended popular
stats books (for winter reading)

FRINKING. Misconceptions of chance. People expect that a
s e < sequence of events g.enerated by .a r’andom process will
- represent the essential characteristics of that process

- even when the sequence is short. In considering tosses of
a coin for heads or tails, for example, people regard the
sequence H-T-H-T-T-H to be more likely than the
sequence H-H-H-T-T-T, which does not appear random,
and also more likely than the sequence H-H-H-H-T-H,

. —
DANIEL
KAHNEMAN

which does not represent the fairness of the coin.” Thus,

Thinking, Fast and SI
by Daniel Kahnemall

STATISTICS
DONE WRONG

he Visual Display

of Quantitative Information

The Visual Display of Quantitative Information Statistics Done Wrong
by Edward R.Tufte by Alex Reinhart

Announcement |: Recommended popular
stats books (for winter reading)

new york times bestseller

THINKING,

the signal
FAST .. s LOW and the noise
DANIEL predictions fail -

but some don’t
KAHNEMAN

nate silver

ibeducri’ —The ow vork Tims booh povee Q)
Thinking, Fast and Slow The Signal and the Noise
by Daniel Kahneman by Nate Silver
I
STATISTICS

DONE WRONG

['he Visual Display

of Quantitative Information

The Visual Display of Quantitative Information Statistics Done Wrong
by Edward R.Tufte by Alex Reinhart

Announcement 2: Projects

Finish up P10
* due this Wed
* no late days (see syllabus), so we have time for fixes before final grading

Report grading issues w/ form
* https://forms.gle/989i5vgmxesENfTNA
* |'ll personally check every timely submission before final grades go out

Please Fill for Grading Issues

You can fill multiple times, and please do so once for each affected project. You will get a receipt
from Google if you fill this form. If you don't, then followup with me (tylerharter@gmail.com)
immediately. Without the receipt, | will not believe later that you filled the form if for some reason |
don't get your submission.

For P9 and before, you must submit any issues by Wed, Dec 11.
For P10, you must submit any issues by Wed, Dec 18th.

Good reasons to fill the form:

1. to report what you believe to be an error

2. to inform us that you have a resubmission that needs regrading

3. to request we count something even though you ran out of late days
4. to make sure any other issue that you've emailed us about doesn't "slip through the cracks"

Your email address (tharter@wisc.edu) will be recorded when you submit this form. Not you?
Switch account

* Required

Which Project? *

Choose

https://forms.gle/989i5vqmxesENfTNA

Announcement 3: Office Hours

Wed is last day for TA+Shelf office hours

There will be increased instructor office hours through Thu, Dec |9th
* https://piazza.com/class/jzkcu4am8Imc3?cid=880

Thu, Dec 12 (I-2pm)
Fri, Dec |13 (I-3pm)
Mon, Dec 16 (I-3pm)
Tue, Dec |7 (1-3pm)
Wed, Dec |8 (9-1 lam)
Thu, Dec |9 (1-3pm)

https://piazza.com/class/jzkcu4am8lmc3?cid=880

Announcement 4: Final Exam

Details: similar to midterms
* worth 20%
| 10 minutes on
you can have a single page of notes (both sides), as usual
cumulative, across whole semester
prep for Wed review session
watch your email for room details!

Recommended prep
* make sure you understand all the problems
* review the , especially anything | took the time to write myself
* review everything you got wrong on the
* review the
* review the code you wrote for the

Announcement 4: Final Exam

Seven one-page sections (35 total questions):
True/False (designed to be fast, to compensate for |0-minute setup)

.

2. Exam | Review

3. Exam 2 Review

4. Pandas

5. Web

6. Databases

/. Plotting
Notes:

®* many questions will have project themes, but we may mix/match
(e.g., "Exam | review" could have world geography questions)

® we may sneak smaller topics into other sections
(e.g., randomness within database section)

Logistics:
® don't trust student center for location!
® aiming to have more proctors
e Student ID scan-out only

Announcement 5: Course Evaluations

Section |I:

https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=609839

Section 2:

https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=609838

| always read all the feedback, so please take the time to complete these!

https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=609839
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=609838

Why Randomize!

Games

Security

. L]

. .
o .,

. our focus

Simulation

‘e, os*
]
NN AN NN NN NN NN AN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NE NN NN NN NN NN NN NN NN NN NSNS NN NN NN NN NN NN NN NN NN NN NN NN NN NEEEEEENEEEEEEEEEEEEEEEEEEEEEEEnmnuuns®

Outline

choice()

bugs and seeding
significance
histograms

normal()

New Functions Today

numpy . random:
¢ powerful collection of functions Cindex | next | previous |

g ENNENENEEEEENEN,

* choicq, normal Random sampling (hnumpy.random) Table Of Contents

* Random sampling

..lIIIIIIIIIII‘

Simple random data (numpy . random)
© Simple random
rand(do, d1, ..., dn) Random values in a given shape. J'I“ o
o e ° randn(do, d1, ..., dn) Return a sample (or samples) from the “standard '/c_jji”:ltgt :
Series.plot.hist: ot dion D
randint{low[, high, size, dtype]) Return random integers from /ow (inclusive) to o ranaen

‘ generator
high (exclusive).

L] L]
® S I m I Iar to ba-r P I Ot random_integers(lowl, high, size]) Random integers of type np.int between /ow and Previous topic

high, inclusive. numpy.RankWarning

o Vi S ual ize S P read Of randam camnlaffcizall Ratirn randnm flnatc in tha half-anan intanual
random results powerful collection of functions

Distributions

beta(a, b[, size]) Draw samples from a Beta
distribution.

binomial(n, p[, size]) Draw samples from a binomial
distribution.

chisquare(dff, size]) Draw samples from a chi-square
distribution.

dirichlet(alphal, size]) Draw samples from the Dirichlet

distribution.

PRV S T N A AT N L [Ty e | = - = o]

choice

from numpy.random import choice, normal

result = choice()

\ list of things to

randomly choose from

choice

from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])

\ list of things to

randomly choose from

Wanna play

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors
https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

choice

from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

Output:

SCissors

Wanna play

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

choice

from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

result = choice(["rock", "paper", "scissors"])
print(result) Output:

SCissors

/y rock

each time choice is
called, a value is randomly
selected (will vary run to run)

choice

from numpy.random import choice, normal

choice(["rock", "paper", "scissors'],

for simulation, we'll often want
to compute many random results

choice

from numpy.random import choice, normal

choice(["rock", "paper", "scissors'"],)

arrayé['rock', 'scissors’', 'paper', 'rock’, 'paper']} dtype='<U8")

*
.
..

it's list-like

Random values and Pandas

from numpy.random import choice, normal

random Series
Series(choice(["rock", "paper",

rock
rock
scissors
paper
scissors
dtype: object

> W N E-= O

"scissors'"],

Random values and Pandas

from numpy.random import choice, normal

random Series
DataFrame(choice(["rock", "paper", "scissors'],

))
'} -

0 1

0 paper rock
1 scissors rock
2 rock rock
3 scissors paper
4

rock scissors

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question |: how can we make sure the randomization isn‘t biased?

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question |: how can we make sure the randomization isn‘t biased?

40 -

30 -

20 -

10

paper -
SCISSOIS -
rock -

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question |: how can we make sure the randomization isn‘t biased?

Question 2: how can we make it biased (if we want it to be)?

80 -
60 -

40 - P=[...]

20 -

rock A
paper -
SCISSOIS -

Random Strings vs. Random Ints

from numpy.random import choice, normal

: rock, paper, or scissors
choice(["rock", "paper", "scissors'])

: 0, 1, or 2
choice([0, 1, 2])

Random Strings vs. Random Ints

from numpy.random import choice, normal

: rock, paper, or scissors
choice(["rock", "paper", "scissors'])

: 0, 1, or 2
choice ([0, 1, 2])

: 0, 1, or 2
choice(3)

\ random non-negative int

that is less than 3

Outline

choice()

bugs and seeding
significance
histograms

normal()

Example: change over time

s = Series(choice(10, size=5)) i
0 6 °
1 7 3
2 7 4 -
3 3 ;.
4 1
dtype: int64 h

1-

|

s.plot.line()

Example: change over time

s = Series(choice(10, size=5))

6

OB WN R~ O
W~

type: inté64

s.plot.line()

percents = []
for 1 in range(l, len(s)):

diff = 100 * (s[i] / s[i-1] - 1)

percents.append(diff)
Series(percents).plot.line()

what are we computing for diff?

= N W s O

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Example: change over time

s = Series(choice(10, size=5))

6

OB WN R~ O
W~

type: inté64

s.plot.line()

percents = []
for 1 in range(l, len(s)):

diff = 100 * (s[i] / s[i-1] - 1)

percents.append(diff)
Series(percents).plot.line()

can you identify the bug in the code?

7-//////
6.
5-
4.
3-
2.
1-
0 1 3
20 1
0.
_20
—40 1
_60
00 05 10 15 20 25 3.0

Example: change over time

s = Series(choice(10, size=5))

0 9 8
1 1 6
2 0

3 8 a
4 8

dtype: int64 2.
s.plot.line() 0.

percents = []
for 1 in range(l, len(s)):
diff = 100 * (s[i] / s[i-1] - 1)

perc ents. append (diff) /Library/Frameworks/Python. framework/Versions/3.7/1ib/

Series (percents) . plOt .line () python3.7/site-packages/ipykernel launcher.py:3: Runti
meWarning: divide by zero encountered in long scalars

This is separate from the ipykernel package so we ca
n avoid doing imports until

can you identify the bug in the code?

Not all bugs are equal!
scary bugs "nice" bugs

non-deterministic deterministic (reproducible)

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!

scary bugs

non-deterministic
system related
randomness

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

"nice" bugs

deterministic (reproducible)

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!
scary bugs "nice" bugs

non-deterministic
system related

deterministic (reproducible)

randomness
large data small data
semantic syntax

runtime

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!

scary bugs "nice" bugs

non-deterministic
system related
randomness

deterministic (reproducible)

large data small data

semantic &A { syntax
runtime

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!

scary bugs "nice" bugs

non-deterministic
system related
randomness

| deterministic (reproducible)
Seedl“q

small data

as 4 syntax
runtime

large data

semantic

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Pseudorandom Generators

"Random" generators are really just pseudorandom

s, “oo: | 559 | o2 | 192 | 635 | e]
57) 235 | 508 | 7207670 oo |

168 | 527 | 493 [584 534 [... |
7 £ B 1 2 B

Pseudorandom Generators

Producing random numbers is like cruising down the tracks...

684 | sobEmR | 192 835 | ... |

235 908 720767 ... f

168 | 527 f 493 [s8a s34 ... |

In [39]: 1 choice(1000, size=3)]

Out[39]: array([684,559,629])

Pseudorandom Generators

Every run, you get on another tracks, so it feels random

684 || 559 [629 1924835 ...]|

235 908 720767 ... f

168 | 527 | 493 [584 534 [... |
7 £ B 1 2 B

Seeding

seeds \

100: 559|629 11921835 ... f

What if | told you that you can choose your track?

lo: 235 908 720767 ... f

102: 527§ 493 584534 ... |

ssaf2as feasfosz|... |

Seeding

What if | told you that you can choose your track?

In [11]: I np.random.seed(301)
2 choice(1000, size=3)

Out[1ll]: array([885, 320, 423])

In [12]: I np.random.seed(301)
2 choice(1000, size=3)

Out[1l2]: array([885, 320, 423)])

In [13]: I np.random.seed(301)
2 choice(1000, size=3)

Out[13]: array([885, 320, 423])

Seeding

Common approach for simulations:
|. seed using current time

2. print seed
3. use the seed for reproducing bugs, as necessary

In [28]: 1 import time
2 now = int(time.time())
3 print("seeding with", now)
np.random.seed (now)
choice (1000, size=3)

seeding with 1556673136

Out[28]: array([352, 734, 362])

Outline

choice()

bugs and seeding
significance
histograms

normal()

In a noisy world, what is noteworthy?

TOUR OF ACCOUNTING ARE

YOU

SURE
THAT'S
RANDOM?

THAT'S THE
PROBLEM
WITH RAN-
DOMNESS:
YOU CAN
NEVER BE
SURE.

NINE NINE
NINE NINE
NINE NINE

OVER HERE
WE HAVE OUR

RANDOM NUMBER
GENERATOR.

yo'&slolo 2001 United Feature Syndicate, Inc.

www.dilbert.com scottadams@aol.com

https://dilbert.com/strip/2001-10-25

https://dilbert.com/strip/2001-10-25

Is this coin biased?

Call shenanigans!?

5 49 a statistician might say we're
trying to decide if the evidence
that the coin isn't fair is

whoever has the coin cheated
(it's not 50/50 heads/tails)

Is this coin biased?

Call shenanigans! No.

Is this coin biased?

Call shenanigans! No.

Call shenanigans!?

Is this coin biased?

Call shenanigans! No.

Call shenanigans?! Yes.

Note: there is a non-zero probability that a fair
coin will do this, but the odds are slim

Is this coin biased?

Call shenanigans! No.

Call shenanigans? Yes.

Call shenanigans!?

Call shenanigans!?

55 million 45 million

Is this coin biased?

Call shenanigans! No.

Call shenanigans?! Yes.

Call shenanigans! No.

Call shenanigans?! Yes.

55 million 45 million

Is this coin biased?

Call shenanigans! No.

('55 million 45 million) small skew over large samples is good evidence

Demo: CoinSim

Call shenanigans!?

Strategy: simulate a fair coin

|. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above |0K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38,

Demo: CoinSim

Call shenanigans!?

60 40

we got |0 more heads than we expect on average
how common is this!?

Strategy: simulate a fair coin

|. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above |0K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

Demo: CoinSim

Call shenanigans!?

60 40

we got |0 more heads than we expect on average
how common is this!?

Strategy: simulate a fair coin

|. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above |0K times

(50,(61,)51, 44, 39, 43, 51, 49, 49,(38,) ...]

| | more |2 less

Outline

choice()

bugs and seeding
significance
histograms

normal()

Frequencies across categories

bars are a good way to view frequencies across categories

s = Series(["rock", "rock", "paper',
"scissors", "scissors', "scissors'"])

s.value counts().plot.bar(color="orange")

40 -

30 -

20 -

10

paper -
SCISSOIS -
rock -

Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9]1)

s.value counts().plot.bar(color="orange")

click to scroll output; double click to hide
.\

1.5+

1.0-

0.5-

0.0

o o8]

numbers not ordered

Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9]1)

s.value counts().sort index().plot.bar(color="orange")

2.0 -

1.5

1.0-

0.5

0.0

— (e 0) (o)}

gap between | and 8 not obvious

Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9])

s.plot.hist()

0 2 4 6 8

Frequency
b b N
o (9] o

O
wn

O
o

Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9])

s.plot.hist()

0.0 L : : , ‘
0 2 4 6 8

this kind of plot is called a histogram

Frequency
b b N
o wu o

o
wn

Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.Hist()
both 0 and 0.1

Frequency
- = N
o wu o

O
wn

0.0-

0 2 4 6 8

a histogram "bins”™ nearby nhumbers to create discrete bars

Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist()

0.0 L : : , ‘
0 2 4 6 8

we can control the number of bins

Frequency
b b N
o wu o

o
wn

Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, O, 1, 8, 9, 9.2]7)

s—valtue—ecounts{)-sort—index{)-plot-bar{})
s.plot.hist(bins=3)

3.0/
2.5 -
2.0 -
=
g
315-
L
1.0
0.5
0.0- ,
0 2 4 6 8

too few bins provides too little detail

Frequencies across numbers
histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist()

Frequency
. o -
(@) (00 o

©
~

O
N

0.0-

too many bins provides too much detail (equally bad)

Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist()

0.0 L : : , ‘
0 2 4 6 8

pandas chooses the default bin boundaries

Frequency
b b N
o wu o

o
wn

Frequencies across numbers
histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s+—vatue—counts{)-soert—index{)-pltot-bar{)

s.plot.Hist()

2.0 1
0.0 L . :
0 2 4 6 8 10

we canh override the defaults

Frequency
b b
o un

o
w

Frequencies across numbers
histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s+—vatue—counts{)-soert—index{)-pltot-bar{)

s.plot.Hist()

2.0 -
0.0 L . :
0 2 4 6 8 10

this is easily done with range

Frequency
b b
o (O]

o
w

Demo:Visualize CoinSim Results

800 -

Frequency
S (@)}
(- (-
o o

N
(-
o

0 20 40 60 80 100

number of heads (out of 100)

Demo:Visualize CoinSim Results

Frequency

800

N
o
o

D
o
o

N
(-
o

20 40 60 80 100

number of heads (out of 100)

this shape resembles what we often call a
normal distribution or a "bell curve"

Demo:Visualize CoinSim Results

800

Frequency
S (@)}
(- (-
o o

N
(-
o

L

0 20 40 60 80 100

number of heads (out of 100)

this shape resembles what we often call a
normal distribution or a "bell curve"

in general, if we take large samples enough times,
the sample averages will look like this
(we won't discuss exceptions here)

Demo:Visualize CoinSim Results

800

Frequency
S (@)}
(- (-
o o

N
(-
o

0 20 40 60 80 100
number of heads (out of 100)

numpy can directly

generate random this shape resembles what we often call a

numbers fitting a Cnormal distributio@or a "bell curve"
normal distribution

in general, if we take large samples enough times,
the sample averages will look like this
(we won't discuss exceptions here)

Outline

choice()

bugs and seeding
significance
histograms

normal()

normal

from numpy.random import choice, normal
import numpy as np

for 1 in range(10):
print(normal())

normal

from numpy.random import choice, normal
import numpy as np

for 1 in range(10):
print(normal()) Output:

-0.18638553993371157
0.02888452916769247
1.2474561113726423
average is 0 (over many calls) —0.5388224399358179
-0.45143322136388525
-1.4001861112018241
0.28119371511868047
0.2608861898556597
-0.19246288728955144
0.2979572961710292

numbers closer to 0 more likely

-X just as likely as x

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist ()

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist ()

Frequency

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100)

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc=®, scale=C))

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc=®, scale=C))

try plugging in different values
(defaults are 0 and |, respectively)

Demo: plot overlay

3000 -

N
-
-
o

Frequency

1000 -

o A

20 40 60 80 100

0
k L 10K samples of 100 coin flips

10K samples from normal(size=10000)

Demo: plot overlay

3000 -

1000 - \\\\\\\\\\\
0 . A

20 40 60 80 100

0
X L 10K samples of 100 coin flips

10K samples from normal(size=10000)

N
-
-
o

version |

Frequency

goal: play with 1oc and scale arguments to normal until gray overlaps red

Demo: plot overlay

3500
3000 -
30001 | | . 2%
O
- T 2000 ; version 2
-
(- o i
g 2000 8 1500
qg) 1000 -
= 500 -
1000 -]
0 20 40 60 80 100
0 ' A '

20 40 60 80 100

0
X L 10K samples of 100 coin flips

10K samples from normal(size=10000)

goal: play with 1oc and scale arguments to normal until gray overlaps red

Demo: plot overlay

3500
3000
3500
q 25
3000 - 2000 |
& 20\
> > 15| 2500
§ 2000 g gzooo | version 3
— 100 Y
@ 5 1500 -
L 5(&
1000 - 1000 -
500 - ‘
0 073 20 40 60 80 100
0 2 — — — -

X L 10K samples of 100 coin flips

10K samples from normal(size=10000)

goal: play with 1oc and scale arguments to normal until gray overlaps red

