[301] Introduction

Tyler Caraza-Harter

Data is exploding in many fields

- Journalism
- Biology, physics, chemistry
- Psychology, sociology, economics, business
- Engineering (mechanical, electrical, industrial, etc)

https://fivethirtyeight.com/features/the-midwest-is-getting-drenched-and-its-causing-big-problems/

https://en.wikipedia.org/wiki/Neuroimaging

https://science.howstuffworks.com/life/genetic/gattaca-gaptacaz-adding-letters-the-genetic-alphabet.htm

Data is exploding in many fields

- Journalism
- Biology, physics, chemistry
- Psychology, sociology, economics, business
- Engineering (mechanical, electrical, industrial, etc)

How can we gain insights from that data?

Data is exploding in many fields

- Journalism
- Biology, physics, chemistry
- Psychology, sociology, economics, business
- Engineering (mechanical, electrical, industrial, etc)

How can we gain insights from that data?

• With computation

Data is exploding in many fields

- Journalism
- Biology, physics, chemistry
- Psychology, sociology, economics, business
- Engineering (mechanical, electrical, industrial, etc)

How can we gain insights from that data?

• With computation

Approach 1: human computation

Data is exploding in many fields

- Journalism
- Biology, physics, chemistry
- Psychology, sociology, economics, business
- Engineering (mechanical, electrical, industrial, etc)

How can we gain insights from that data?

• With computation

Approach 1: human computation

https://en.wikipedia.org/wiki/Human_computer

CS 301 is about approach 2

• Faster, more reliable, can churn through more data

Approach 1: human computation

Approach 2: machine computation

https://en.wikipedia.org/wiki/Human_computer

CS 301 is about approach 2

- Faster, more reliable, can churn through more data
- Automate to save human effort

"Find the leverage in the world, so you can be more lazy!"

~ Larry Page

Approach 1: human computation

Approach 2: machine computation

https://en.wikipedia.org/wiki/Human_computer

CS 301 is about approach 2

- Faster, more reliable, can churn through more data
- Automate to save human effort
- Requires being able to tell computers what to do!

society needs more domain experts in specific fields who can write code

Approach 1: human computation

Approach 2: machine computation

CS 301 is about approach 2

- Faster, more reliable, can churn through more data
- Automate to save human effort
- Requires being able to tell computers what to do!

society needs more domain experts in specific fields who can write code

Goal: become "bilingual"

- Speak the language of X (biology, mech eng, journalism, etc)
- Speak the language of computing

Why CS 301?

Common approach to introductory CS courses

- Use a programming language like C++ or Java
- Teach CS students and other majors together
- Emphasis on theory
- Light on data

Why CS 301?

Common approach to introductory CS courses

- Use a programming language like C++ or Java
- Teach CS students and other majors together
- Emphasis on theory
- Light on data

CS 301 approach

- Pioneered by Laura Hobbes LeGault
- Use Python (powerful but easy easier to learn)
- Goal: bring more programming into other fields
- Practical, minimal theory
- Emphasis on data, simulation, analysis, plotting

Today's Topics

Introductions

• Who am I? Who are you?

Course overview

Computer hardware basics

Website

Who am I?

Tyler Caraza-Harter

- Email: tylerharter@gmail.com
- Just call me "Tyler"

Long time badger

- Did undergrad, masters, and PhD at UW-Madison
- 2nd time teaching CS 301

Work in industry

- Worked at Microsoft on SQL Server and Cloud
- Other internships/collaborations: Qualcomm, Google, Facebook, Tintri

Open-source projects

- OpenLambda project (Python-based platform)
- PivotLibre project (preferential-voting tool)

Who are You?

Year in school?

• 1st year? 2nd? Junior/senior? Grad student?

Area of study

• Natural science, social science, engineering, other?

How many have programmed before?

• Any language? Python? Taken a class?

Survey (counts for participation)

Please help us get to know you (not anonymous):

https://goo.gl/forms/WtWRjr7qFt4jYfEV2

be sure to use your

campus email!!!

Purposes:

- gauge class interest/experience
- determine who on waitlist is attending (please finish by 4pm today!)
- correlate experience with later scores

Terms

Survey: Common Technical Issues

You need permission

This form can only be viewed by users in the owner's organization. Try contacting the owner of the form if you think this is a mistake. Learn More.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service

Google Forms

if you see this, it means you're signed in via Gmail instead of your campus email

Survey: Common Technical Issues

You need permission

This form can only be viewed by users in the owner's organization. Try contacting the owner of the form if you think this is a mistake. Learn More.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service

Google Forms

if you see this, it means you're signed in via Gmail instead of your campus email

if you were automatically signed into gmail without being asked, consider clearing cookies or using an Incognito Window (in Chrome)

	*	* 🔒	🚱 🗄
New Tab			жт
New Window			ЖN
New Incognito Window			ፚቘN
History			•
Downloads			τ#L
Bookmarks			•
Zoom	-	100% +	20
Print			ЖP
Cast			
Find			ЖF
More Tools			•
Edit	Cut	Сору	Paste
Settings			¥,
Help			+

Three types of students...

1. Lazy CS senior

"I am a senior CS student, this class was very easy for me" [from F18 course eval]

Comment: drop this course and take something that challenges you. You're not the target audience, and we'll make zero effort to make 301 interesting to you.

2. Mandatory participants

"Make it significantly easier. None of [us] will ever code again..." [from F18 course eval]

Comment: we're working with the assumption that your future careers WILL involve writing code in the future. 301 is challenging because our goal to prepare you for it.

3. Enthusiastic beginner

"Good course, I think there is a good pace for this course, speaking as someone with zero programming experience coming into the class." [from F18 course eval]

Comment: this course is for you! Invest the time, and you'll walk away with a superpower (the ability to make computers work for you)

Today's Topics

Introductions

Course overview

- Learning objectives
- Lecture
- Lab
- Readings
- Class communication
- Grades
- Projects
- Exams

Computer hardware basics

Website

301 Topics

Basic Python

- How to get data in/out of a program [I/O]
- How does program remember things [state]
- What is executed when [control flow]

Data structures

• How to organize lots of data? [data structures]

Popular data formats

• How to ingest tabular data, hierarchical data, web pages

Database basics

• Asking questions about data [querying]

Plotting

• Choosing and implementing visual communication

Today's Topics

Introductions

Course overview

- Learning objectives
- Lecture
- Lab
- Readings
- Class communication
- Grades
- Projects
- Exams

Computer hardware basics

Website

Lecture Style

general concepts

worksheet practice

live coding

Your role

- do readings before or after
- feel free to bring your laptop along! (but avoid the temptation to get distracted)
- I love to get questions

Attendance isn't graded

 One student's suggestion for improvement (f18): "I think one MAJOR thing to do is make lecture mandatory"

Attendance isn't graded

• One student's suggestion for improvement (f18): "I think one MAJOR thing to do is make lecture mandatory"

Attendance isn't graded

• One student's suggestion for improvement (f18): "I think one MAJOR thing to do is make lecture mandatory"

Attendance isn't graded

• One student's suggestion for improvement (f18): "I think one MAJOR thing to do is make lecture mandatory"

Tip: as a student, you can make anything mandatory for yourself you like! Think carefully about what you should, then practice following through.

Topic Progression

Programming knowledge builds

• For first couple months, trying to skip foundational knowledge will be problematic throughout the semester

Today's Topics

Introductions

Course overview

- Learning objectives
- Lecture
- Lab
- Readings
- Class communication
- Grades
- Projects
- Exams

Computer hardware basics

Website

Labs

Format

- 75 minutes on Thu or Fri, leave when you're done
- typically: work through a practice document
- self guided, not graded
- purpose: prep for project

People

- pair with another student each time
- 1-2 TAs will be there to answer questions

Computers

- lab computers are provided (must have 2 students per computer)
- feel free to bring your own laptop

we will have labs this first week

Today's Topics

Introductions

Course overview

- Learning objectives
- Lecture
- Lab
- Readings
- Class communication
- Grades
- Projects
- Exams

Computer hardware basics

Website

Readings (all free!)

<section-header>

Think Python, 2nd Edition

- Allen B. Downey
- Assumes no programming background
- It's very concise
- Get the 2nd edition, which is for Python 3!

Automate the Boring Stuff

- Al Sweigart
- Useful for some more advanced topics related to using data

CS 301 Notes

Course Notes

- 301 instructors
- Mostly for data science part of class

Today's Topics

Introductions

Course overview

- Learning objectives
- Lecture
- Lab
- Readings
- Class communication
- Grades
- Projects
- Exams

Computer hardware basics

Website

Communication is CS 301

Good communication is critical for a class of this size

• Who needs to communicate: students, TAs, instructors

Besides direct email, we'll use five communication tools

- Piazza
- Email lists
- Feedback Form
- Project Submission
- Canvas

Communication is CS 301

Good communication is critical for a class of this size

• Who needs to communicate: students, TAs, instructors

Besides direct email, we'll use five communication tools

- Piazza
- Email lists
- Feedback Form
- Project Submission
- Canvas

Communication is CS 301

Good communication is critical for a class of this size

• Who needs to communicate: students, TAs, instructors

Besides direct email, we'll use five communication tools

- Piazza
- Email lists
- Feedback Form
- Project Submission
- Canvas

Communication is CS 301

Good communication is critical for a class of this size

• Who needs to communicate: students, TAs, instructors

Besides direct email, we'll use five communication tools

- Piazza
- Email lists
- Feedback Form
- Project Submission
- Canvas

Communication is CS 301

Good communication is critical for a class of this size

• Who needs to communicate: students, TAs, instructors

Besides direct email, we'll use five communication tools

- Piazza
- Email lists
- Feedback Form
- Project Submission
- Canvas

Communication is CS 301

Good communication is critical for a class of this size

• Who needs to communicate: students, TAs, instructors

Besides direct email, we'll use five communication tools

- Piazza
- Email lists
- Feedback Form
- Project Submission
- Canvas

Today's Topics

Introductions

Course overview

- Learning objectives
- Lecture
- Lab
- Readings
- Class communication
- Grades
- Projects
- Exams

Computer hardware basics

Website

Grades

49% - programming projects

- **10 projects**, not evenly weighted
- we'll share grading tests with you avoid surprise
- learning to program is the most import part of the course

50% - exams

- 15% midterm 1 (evening)
- 15% midterm 2 (evening)
- 20% final
- finalized times coming soon
- 1% participation
 - filling surveys, following directions, other

At end of semester, we'll add up your total score, then set a curve to determine letter cutoffs.

Grades

49% - programming projects

- 10 projects, not evenly weighted
- we'll share grading tests with you avoid surprise
- learning to program is the most import part of the course

50% - exams

- 15% midterm 1 (evening)
- 15% midterm 2 (evening)
- 20% final
- finalized times coming soon
- 1% participation
 - filling surveys, following directions, other

At end of semester, we'll add up your total score, then set a curve to determine letter cutoffs.

Today's Topics

Introductions

Course overview

- Learning objectives
- Lecture
- Lab
- Readings
- Class communication
- Grades
- Projects
- Exams

Computer hardware basics

Website

Prior student reaction to projects

Projects: How useful were projects to your learning?

Projects are the heart and soul of CS 301

Project Overview

Nearly all projects will relate to some dataset

Timeline

- Projects will be due most weeks, on Wed, at midnight
- You get 5 late days, use them wisely!
- Contact us about any issues

Getting help

- Piazza (don't share substantial code) or email (do share code)
- Lab sessions
- Instructor or TA office hours
- CSLC (Computer Science Learning Center)

You can optionally work in pairs of two

- Partnerships across sections allowed
- Switch partners between projects (or keep with same partner)

You can optionally work in pairs of two

- Partnerships across sections allowed
- Switch partners between projects (or keep with same partner)

bad: partners don't share work

You can optionally work in pairs of two

- Partnerships across sections allowed
- Switch partners between projects (or keep with same partner)

bad: working on different parts at different times

You can optionally work in pairs of two

- Partnerships across sections allowed
- Switch partners between projects (or keep with same partner)

better: working alongside each other

You can optionally work in pairs of two

- Partnerships across sections allowed
- Switch partners between projects (or keep with same partner)

best: working on same computer

You can optionally work in pairs of two

- Partnerships across sections allowed
- Switch partners between projects (or keep with same partner)

Suggestions

- Take turns coding (don't be greedy/aggressive!)
- One person types, other makes suggestions and thinks about design

YOU

feedback is mostly about how to do things better or more simply (valuable even if you score 100%)

Today's Topics

Introductions

Course overview

- Learning objectives
- Lecture
- Lab
- Readings
- Class communication
- Grades
- Projects
- Exams

Computer hardware basics

Website

Exams

There will be two midterms and one final

- Check website for dates/locations
- One 8.5 by 11 in handwritten notesheet allowed only
- Exams will be multiple choice scantron

Contents

- cumulative
- ideally not much time pressure
- one goal: reward project partners doing more work over those slacking

Today's Topics

Introductions

Course overview

Computer hardware basics

- Input/Output
- CPU
- Memory
- Storage
- Networking

Website

Today's Topics

Introductions

Course overview

Computer hardware basics

- Input/Output
- CPU
- Memory
- Storage
- Networking

Website

Input/Output

I/O (stands for input/output)

• What are examples for human?

Input/Output

I/O (stands for input/output)

• What are examples for human?

input: senses

Input/Output

I/O (stands for input/output)

• What are examples for human?

input: senses

output: muscles

computer (in a case)

what are some common compute inputs?

what are some common compute outputs?

keyboard

mouse
Computer Internals

Computer Internals

Motherboard: main circuit board to which other components connect, via sockets/slots

Introductions

Course overview

Computer hardware basics

- Input/Output
- CPU
- Memory
- Storage
- Networking

Central Processing Unit (CPU)

Central Processing Unit (CPU)

CPU

Responsible for computation

- Runs code
- Performs addition, other math
- Compares numbers, text
- Receives input, sends output
- Some compare it to a "brain"

Runs on a clock

- Typically a couple GHz (i.e., billions of ticks per second)
- High-speed makes CPUs hot, require fans/cooling

Computers often have multiple CPUs

- Motherboard may have multiple sockets
- Single chip may contain multiple CPUs
- Allows computers to do more things simultaneously

Introductions

Course overview

Computer hardware basics

- Input/Output
- CPU
- Memory
- Storage
- Networking

Random Access Memory (RAM)

Random Access Memory (RAM)

Memory

Memory stores data for short term

- RAM is most common form today (don't worry about specifics)
- CPU sends data to/from memory
- Accessing it is very fast
- It is "volatile" meaning you lose this data when you power off your computer
- You don't save "files" in memory, otherwise they would be gone!

Stores bytes of data

- One byte \approx one letter
- The text "hello" requires 5 bytes
- Typical personal computer has few to tens of gigabytes (billion bytes) of memory

Introductions

Course overview

Computer hardware basics

- Input/Output
- CPU
- Memory
- Storage
- Networking

Storage Drives

Storage Drives

Storage Drives

Two common devices

- HDD (hard disk drive), has moving parts, cheap, slow
- SSD (solid state drive), no moving parts, expensive, fast
- Both much slower than RAM...

Storage devices used to save data after power down

- Persistant medium, in contrast to volatile RAM
- Typical capacity: hundreds of gigabytes

When you make a directory/folder or save a file, that data is ultimately getting recorded to your storage device

• Sometimes computers save to RAM first, and only to the device later; power down cleanly to avoid losing your data!!!

Introductions

Course overview

Computer hardware basics

- Input/Output
- CPU
- Memory
- Storage
- Networking

Network Interfaces

Network Interfaces

Network: often based on extension card or built into the motherboard itself

Networking

NIC (Network Interface Controller)

• Provides computer communication to other computers, and the Internet

Wired vs. Wireless

- Wired ethernet is common for cable-based connection
- Wi-Fi is common for radio-based wireless connection

Terminology

- Server: program/computer that runs, waiting for for incoming requests, to which it responds
- Client: program/compute that sends requests to a server

Introductions

Course overview

Computer hardware basics

Course Website

There are three lecture sections for 301 this spring. I'm teaching sections 2 and 3 and Caroline Hardin is teaching 1.

Shared website:

https://tyler.caraza-harter.com/cs301/spring19/home.html

Walk through...

Conclusion: five action steps for you

- take the "Who are You?" survey: <u>https://tyler.caraza-harter.com/cs301/spring19/surveys.html</u>
- read syllabus carefully: <u>https://tyler.caraza-harter.com/cs301/spring19/syllabus.html</u>
- sign into **Piazza**
- setup Python on your computer: <u>https://tyler.caraza-harter.com/cs301/spring19/videos.html</u>
- start Project 1 (due next Wed): <u>https://tyler.caraza-harter.com/cs301/spring19/projects.html</u>