
[301] Refactoring Conditionals
Tyler Caraza-Harter

�1

How to use these slides:

!2

There are more examples here than we can cover in lecture.

However, you can walk through these examples along with
the interactive exercises. You should do the following:

1. think about what the answer is

2. mentally step through the code using the example call

when applicable

3. step through the code with the Python Tutor examples

we've setup for you. For the refactor examples, step
through all three versions, and see which alternative (A or
B) matches the output of the original version.

4. if you got something different than Python Tutor, tweak
your mental model (talk to us if you don't understand
something)

Today's Outline

Review

Refactoring Conditionals

!3

def subtract(x=100, y=1):  
 return x - y

x = 200  
y = 2  
print(subtract(y=y))

!4

Review 1: default for first (but not second) arg

Your job: Show what each variable (including parameters) will contain in each frame

def divide(top, bottom):  
 return top/bottom

def flip_div(top=1, bottom=2, flip=False):  
 if flip:  
 return divide(top=bottom, bottom=top)  
 else:  
 return divide(top=top, bottom=bottom)  
 
x = 2  
y = 3  
print(flip_div(x, y, True))

!5

Review 2: arguments and conditions

Your job: Show what each variable (including parameters) will contain in each frame

last_b = None  
 
def divide(t, b=None):  
 global last_b  
 if b == None:  
 b = last_b  
 last_b = b  
 return t / b  
 
print(divide(1, 4))  
print(divide(2))

!6

Review 3: globals and conditionals

Your job: what does the second print display?

Today's Outline

Review

Refactoring Conditionals

!7

def or2(cond1, cond2):  
 return cond1 or cond2

!8

def or2(cond1, cond2):  
 rv = False  
 rv = rv or cond1  
 rv = rv or cond2  
 return rv

which refactor
is correct?

hint: or2(False, True)

def or2(cond1, cond2):  
 if cond1:  
 return cond2  
 else:  
 return False

A B

Refactor Exercise 1

!9

Refactor Exercise 1

return b1 or b2 or b3 or ... or bN

rv = False  
rv = rv or b1  
rv = rv or b2  
rv = rv or b3  
...  
rv = rv or bN

Lesson: with "or", it only takes one to flip the whole thing True!

equivalent

def and2(cond1, cond2):  
 return cond1 and cond2

!10

def and2(cond1, cond2):  
 rv = False  
 rv = rv and cond1  
 rv = rv and cond2  
 return rv

which refactor
is correct?

hint: and2(True, True)

def and2(cond1, cond2):  
 if cond1:  
 return cond2  
 else:  
 return False

A B

Refactor Exercise 2

!11

Refactor Exercise 2

return b1 and b2 and b3 and ... and bN

if b1:  
 return b2 and b3 and ... and bN  
else:  
 return False

Lesson: with "and", the first one can make the whole thing False!

equivalent

def fix(moves, should):  
 if moves:  
 if should:  
 return "good"  
 else:  
 return "duct tape"  
 else:  
 if should:  
 return "WD-40"  
 else:  
 return "good"

!12

def fix(moves, should):  
 if moves and not should:  
 return "duct tape"  
 elif not moves and should:  
 return "WD-40"  
 elif moves and should:  
 return "good"  
 elif not moves and not should:  
 return "good"

which refactor
is correct?

hint: fix(False, False)

def fix(moves, should):  
 if should:  
 if moves:  
 return "duct tape"  
 else:  
 return "good"  
 else:  
 if moves:  
 return "good"  
 else:  
 return "duct tape"

A B

Refactor Exercise 3

!13

Refactor Exercise 3

Lesson: when handling combinations of booleans, you can 
either do either (a) nesting or (b) chaining with and

T F

T F

A

B
T F

B

case 1 case 2 case 3 case 4

A, B

case 1 case 2 case 3 case 4

T,T T,F F,T
F,F

Option 1: Nesting

Option 2: Chaining

equivalent

def is_301(a, b, c):  
 return a==3 and b==0 and c==1

!14

def is_301(a, b, c):  
 if a==3:  
 if c==1:  
 if b==0:  
 return True  
 return False

def is_301(a, b, c):  
 if a==3 or b==0 or c==1:  
 return False  
 return True

which refactor
is correct?

A B

hint: is_301(3, 0, 1)

Refactor Exercise 4

!15

Refactor Exercise 4

return b1 and b2 and b3 and ... and bN

if b1:  
 if b2:  
 if b3:  
 ...  
 if bN:  
 return True  
return False  

Lesson: nesting a lot of if's inside each other is equivalent to and'ing all the conditions

equivalent

def is_301(a, b, c):  
 return a==3 and b==0 and c==1

!16

def is_301(a, b, c):  
 if a==3:  
 return True  
 if b==0:  
 return True  
 if c==1:  
 return True  
 return False

def is_301(a, b, c):  
 if a!=3:  
 return False  
 if b!=0:  
 return False  
 if c!=1:  
 return False  
 return True

which refactor
is correct?

A B

hint: is_301(3, 9, 1)

Refactor Exercise 5

!17

Refactor Exercise 5
return b1 and b2 and b3 and ... and bN

if not b1:  
 return False  
if not b2:  
 return False  
if not b3:  
 return False  
...  
if not bN:  
 return False  
return True

Lesson: checking if everything is True can be translated 
to seeing if we can find anything False

equivalent

