
[301] JSON
Tyler Caraza-Harter

Learning Objectives Today

JSON

• differences with Python syntax

• creating JSON files

• reading JSON files

Read: Sweigart Ch 14
https://automatetheboringstuff.com/chapter14/

“JSON and APIs” to the end

https://automatetheboringstuff.com/chapter14/

Python Data Structures and File Formats
Python File

[
 [“name”, “x”, “y”],
 [“alice”, 100, 150],
 [“bob”, -10, 80]
]

name,x,y
alice,100,150
bob,-10,80

list of lists
CSV file

We can use CSV files to store
data we would want in lists of lists

Python Data Structures and File Formats
Python File

[
 [“name”, “x”, “y”],
 [“alice”, 100, 150],
 [“bob”, -10, 80]
]

name,x,y
alice,100,150
bob,-10,80

list of lists
CSV file

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

dict of dicts

?

Python Data Structures and File Formats
Python File

[
 [“name”, “x”, “y”],
 [“alice”, 100, 150],
 [“bob”, -10, 80]
]

name,x,y
alice,100,150
bob,-10,80

list of lists
CSV file

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

dict of dicts JSON file

Python Data Structures and File Formats
Python File

[
 [“name”, “x”, “y”],
 [“alice”, 100, 150],
 [“bob”, -10, 80]
]

name,x,y
alice,100,150
bob,-10,80

list of lists
CSV file

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

dict of dicts

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

JSON file

JSON files look almost
identical to Python code

for data structures!

Python Data Structures and File Formats
Python File

[
 [“name”, “x”, “y”],
 [“alice”, 100, 150],
 [“bob”, -10, 80]
]

name,x,y
alice,100,150
bob,-10,80

list of lists
CSV file

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

dict of dicts

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

JSON file

JSON files look almost
identical to Python code

for data structures!

dicts use curly braces

Python Data Structures and File Formats
Python File

[
 [“name”, “x”, “y”],
 [“alice”, 100, 150],
 [“bob”, -10, 80]
]

name,x,y
alice,100,150
bob,-10,80

list of lists
CSV file

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

dict of dicts

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

JSON file

JSON files look almost
identical to Python code

for data structures!

keys are separated from
values with a colon

Python Data Structures and File Formats
Python File

[
 [“name”, “x”, “y”],
 [“alice”, 100, 150],
 [“bob”, -10, 80]
]

name,x,y
alice,100,150
bob,-10,80

list of lists
CSV file

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

dict of dicts

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

JSON file

JSON files look almost
identical to Python code

for data structures!

lists use square brackets

Python Data Structures and File Formats
Python File

[
 [“name”, “x”, “y”],
 [“alice”, 100, 150],
 [“bob”, -10, 80]
]

name,x,y
alice,100,150
bob,-10,80

list of lists
CSV file

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

dict of dicts

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

JSON file

JSON files look almost
identical to Python code

for data structures!

strings are in quotes

Python Data Structures and File Formats
Python File

[
 [“name”, “x”, “y”],
 [“alice”, 100, 150],
 [“bob”, -10, 80]
]

name,x,y
alice,100,150
bob,-10,80

list of lists
CSV file

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

dict of dicts

{
 “alice”: {
 “age”: 40,  
 “scores”: [10,20,19]},
 “bob”: {
 “age”: 45,
 “scores”: [15,23,17,15]}
}

JSON file

JSON files look almost
identical to Python code

for data structures!

integers look like integers

JSON

Stands for JavaScript Object Notation

• JavaScript is a language for web development

• JSON was developed as a way for JavaScript programs to store/

share data

• JavaScript is similar to Python, which is why JSON looks like

Python code

JSON

Stands for JavaScript Object Notation

• JavaScript is a language for web development

• JSON was developed as a way for JavaScript programs to store/

share data

• JavaScript is similar to Python, which is why JSON looks like

Python code

Minor JavaScript vs. Python differences:

Python JSON
Booleans True, False true, false
No value None null
Quotes Single (‘) or double (“) Only double (“)

Commas Extra allowed: [1,2,] No extra: [1,2]
Keys Any type: {1: “one”} Str only: {“1”: “one”}

Reading JSON Files

{

 “alice”: 10,

 “bob”: 12,

 “cindy”: 15

}

JSON file saved somewhere

Reading JSON Files

{

 “alice”: 10,

 “bob”: 12,

 “cindy”: 15

}

JSON file saved somewhere

Python Program

Parsing Code

Reading JSON Files

{

 “alice”: 10,

 “bob”: 12,

 “cindy”: 15

}

JSON file saved somewhere

Python Program

{“alice”:10, “bob”:12,  
 “cindy”:15}

Parsing Code

di
ct

Reading JSON Files

{

 “alice”: 10,

 “bob”: 12,

 “cindy”: 15

}

JSON file saved somewhere

Python Program

{“alice”:10, “bob”:12,  
 “cindy”:15}

Analysis Code

di
ct

 data[“cindy”] 15

Parsing Code

{

 “alice”: 10,

 “bob”: 12,

 “cindy”: 15

}

JSON file saved somewhere

Python Program

{“alice”:10, “bob”:12,  
 “cindy”:15}

Analysis Code

di
ct

 data[“cindy”] 15

Reading JSON Files

Parsing Code

What does this look like?

{

 “alice”: 10,

 “bob”: 12,

 “cindy”: 15

}

JSON file saved somewhere

Python Program

{“alice”:10, “bob”:12,  
 “cindy”:15}

Analysis Code

di
ct

 data[“cindy”] 15

Reading JSON Files

Parsing Code

What does this look like?

import json

def read_json(path):
 with open(path, encoding="utf-8") as f:
 return json.load(f)

CTRL C+
don't need to understand

this snippet yet

{

 “alice”: 10,

 “bob”: 12,

 “cindy”: 15

}

JSON file saved somewhere

Python Program

{“alice”:10, “bob”:12,  
 “cindy”:15}

Analysis Code

di
ct

 data[“cindy”] 15

Reading JSON Files

Parsing Code

What does this look like?

import json

def read_json(path):
 with open(path, encoding="utf-8") as f:
 return json.load(f)

what about writing?

CTRL C+
don't need to understand

this snippet yet

Data Structures and Files

Data Structures
[lists, dicts, etc]

Files
[CSVs, JSONs, etc]

parsing

serialization

Data Structures and Files

Data Structures
[lists, dicts, etc]

Files
[CSVs, JSONs, etc]

parsing

serialization

why not just have data structures?
because our data needs to live somewhere when our programs aren't running

Data Structures and Files

Data Structures
[lists, dicts, etc]

Files
[CSVs, JSONs, etc]

parsing

serialization

why not just have data structures?
because our data needs to live somewhere when our programs aren't running

why not just have files?
slow, and Python doesn't understand structure until it is parsed

Writing JSON Files Python Program

{}

Code

di
ct

Writing JSON Files Python Program

{“cindy”: 15}

Code

di
ct

 data[“cindy”] = 15

Writing JSON Files Python Program

{“cindy”: 15}

Code

di
ct

 data[“cindy”] = 15

Serialization Code

Writing JSON Files

{

 “cindy”: 15

}

JSON file saved somewhere

Python Program

{“cindy”: 15}

Code

di
ct

 data[“cindy”] = 15

Serialization Code

{

 “cindy”: 15

}

JSON file saved somewhere

Python Program

{“cindy”: 15}

Code

di
ct

 data[“cindy”] = 15

What does this look like?

Serialization Code

Writing JSON Files

{

 “cindy”: 15

}

JSON file saved somewhere

Python Program

{“cindy”: 15}

Code

di
ct

 data[“cindy”] = 15

What does this look like?

Serialization Code

Writing JSON Files
import json

def write_json(path, data):
 with open(path, 'w', encoding="utf-8") as f:
 return json.dump(data, f, indent=2)

CTRL C+
don't need to understand

this snippet yet

Demo 1: Number Count

Goal: count the numbers in a list saved as a JSON file

Input:

• Location of the file

Output:

• The sum

Example: 
 
prompt> python sum.py fileA.json 
6  [1,2,3]

fileA.json

Demo 2: Fifa JSON

Goal: lookup stats about players

Input:

• Player ID and column

Output:

• The value

Example: 
 
prompt> python lookup.py 20801 name 
Cristiano Ronaldo 

{
 "20801": {
 "name": "Cristiano Ronaldo",
 "Age": 32,
 "nationality": "Portugal",
 "club": "Real Madrid CF",
 "league": "Spanish Primera Divisi\u00f3n",
 "euro_wage": 565000,
 "networth": 95500000,
 "score_of_100": 94
...

fifa.json

Demo 3: Score Tracker

Goal: record scores (save across runs) and print average

Input:

• A name and a score to record

Output:

• Running average for that person

Example: 
 
prompt> python record.py alice 10 
Alice Avg: 10 
prompt> python record.py alice 20 
Alice Avg: 15 
prompt> python record.py bob 13 
Bob Avg: 13

Demo 4: Prime Cache

Goal: find number of primes less than N, 
 remembering previous answers

Input:

• An integer N

Output:

• How many primes are less than that number

Demo 5: Upper Autocomplete

Goal: record scores (save across runs) and print average

Input:

• A complete phrase

• A partial phrase ending with a *

Output:

• The upper case version of it

• Options to autocomplete

Example: 
 
prompt> python shout.py 
msg: hi 
HI 
msg: hello 
HELLO 
msg: h* 
1: hi 
2: hello 
select: 1 
HI

autocomplete must work

across multiple runs

