[301] Randomness

Tyler Caraza-Harter

Which series was randomly generated?
Which did | pick by hand?

Announcement 1: Recommended popular
stats books (for summer reading)

THANKING . Misconceptions of chance. People expect that a
s e < sequence of events g.enerated by .a r.andom process will

| represent the essential characteristics of that process
| even when the sequence is short. In considering tosses of
a coin for heads or tails, for example, people regard the
sequence H-T-H-T-T-H to be more likely than the
sequence H-H-H-T-T-T, which does not appear random,
and also more likely than the sequence H-H-H-H-T-H,

. —
DANIEL

KAHNEMAN

which does not represent the fairness of the coin.” Thus,

Thinking, Fast and S
by Daniel Kahnemal

RE THAN 50,000 COPIES SULD““NOW WITH NEW MATERIAL _
; STATISTICS
BOSCUASV VY] | DONE WRONG

HOW TO

MEASURE |
ANYTHING

Finding the Value of | ,._‘,'- .": :.
SINTANGIBLES” = (+l. = .Y
in Business Egew s

WILEY

How to Measure Anything Statistics Done Wrong
by Douglas W. Hubbard by Alex Reinhart

Announcement 1: Recommended popular
stats books (for summer reading)

THINKING,
FAST .. SLOW

DANIEL
KAHNEMAN

Thinking, Fast and Slow
by Daniel Kahneman

MORE THAN 50,000 COPIES SULD-“NOW WITH NEW MATERIAL

.

DOUCLAS W. HUBBARD J

HOW TO
MEASURE |
ANYTHING

Finding the Vailue'of] .77

SINTANGIBLES” = (-0~ .Y
in Business —eRR

How to Measure Anything

by Douglas W. Hubbard

new york times bestseller

the signal
and the noise

why so many
predictions fail -
but some don’t

nate silver
e . O

The Signal and the Noise
by Nate Silver

STATISTICS
DONE WRONG

Statistics Done Wrong
by Alex Reinhart

Announcement 2: Course Evaluations

Section 2:

https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=593535

Section 3:

https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=593536

| always read all the feedback, so please take the time to
complete these!

https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=593535
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=593536

Announcement 3: Final Exam Prep

Details: similar to midterms
« worth 20%
« 2 hours on (in the morning!)
 you can have a single page of notes (both sides), as usual
- cumulative, across whole semester
* prep for Friday review session
- watch your email for room details!

Recommended prep

- make sure you understand all the problems

* review the , especially anything | took the time to write myself
* review everything you got wrong on the

* review the

* review the code you wrote for the

Things not on the old final that we covered this semester
* beautifulsoup
* randomness

Why Randomize?

Games

Security

Simulation

Why Randomize?

Games

Security

..
- L]

.

o .,

. our focus

Simulation

......

Outline

choice()

bugs and seeding
significance
histograms

normail()

New Functions Today

numpy . random:

* powerful collection of functions

“IIIIIIIIIIII

 :choice, normal

..lIIIIIIIIIII‘

Series.plot.hist:

e similar to bar plot
e visualize spread of
random results

Simple random data

rand(do, d1, ..., dn)
randn(doO, d1, ..., dn)

randint(low[, high, size, dtype])

random_integers(low[, high, size])

randnm camnlaflfcizall

Distributions
beta(a, b[, size])
binomial(n, p[, size])
chisquare(dff, size])

dirichlet(alphal, size])

v e ries | ool

Scipy.org NumPy v1.15 Manual NumPy Reference m

Random sampling (hnumpy.random) Table Of Contents

e Random samp ng

(numpy.random)

© Simple random
Random values in a given shape. N l\]:imtt .
Return a sample (or samples) from the “standard o Distr 4 u;“;l;
normal” distribution. o Random
Return random integers from /ow (inclusive) to generator
high (exclusive). -
Random integers of type np.int between /ow and Previous topic
high, inclusive. numpy.RankWarning

Ratiirn randnm flaatc in tha halfo.anan intarnsal

powerful collection of functions

Draw samples from a Beta
distribution.

Draw samples from a binomial
distribution.

Draw samples from a chi-square
distribution.

Draw samples from the Dirichlet
distribution.

[Ty e | = - = o]

choice

from numpy.random import choice, normal

choice

from numpy.random import choice, normal

result = choice()

Q\\\‘~ list of things to

randomly choose from

choice

from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])

\ list of things to

randomly choose from

Wanna play

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors
https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

choice

from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

Output:

scissors
Wanna play

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

choice

from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

result = choice(["rock", "paper", "scissors"])
print(result) Output:

scissors
rock

choice

from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

result = choice(["rock", "paper", "scissors"])
print(result) Output:

scissors

/p rock

each time choice is
called, a value is randomly
selected (will vary run to run)

choice

from numpy.random import choice, normal

choice(["rock", "paper", "scissors'],

for simulation, we'll often want
to compute many random results

choice

from numpy.random import choice, normal

choice(["rock", "paper", "scissors'"],)

arrayé['rock', 'scissors’', 'paper', 'rock’, 'paper']} dtype='<U8")

*
.
..

it's list-like

Random values and Pandas

from numpy.random import choice, normal

random Series
Series(choice(["rock",

Ilpaperll ,

"scissors'"],

Random values and Pandas

from numpy.random import choice, normal

random Series
Series(choice(["rock", "paper",

rock
rock
scissors
paper
scissors
dtype: object

> W N E-= O

"scissors'"],

Random values and Pandas

from numpy.random import choice, normal

random Series
DataFrame(choice(["rock", "paper", "scissors'],

))

0 1

0 paper rock
1 scissors rock
2 rock rock
3 scissors paper
4

rock scissors

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

40 |

30 -

20 -

10

paper -
SCISSOIS -
rock -

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Question 2: how can we make it biased (if we want it to be)?

80 -
60 -

40 - p=[...]

20 -

rock A
paper -
SCISSOIS -

Random Strings vs. Random Ints

from numpy.random import choice, normal

: rock, paper, or scissors
choice(["rock", "paper", "scissors'])

Random Strings vs. Random Ints

from numpy.random import choice, normal

: rock, paper, or scissors
choice(["rock", "paper", "scissors'])

: 0, 1, or 2
choice ([0, 1, 2])

Random Strings vs. Random Ints

from numpy.random import choice, normal

: rock, paper, or scissors
choice(["rock", "paper", "scissors'])

: 0, 1, or 2
choice ([0, 1, 2])

: 0, 1, or 2
choice(3)

Random Strings vs. Random Ints

from numpy.random import choice, normal

: rock, paper, or scissors
choice(["rock", "paper", "scissors'])

: 0, 1, or 2
choice ([0, 1, 2])

: 0, 1, or 2
choice(3)

ﬁ\\\\“ random non-negative int

that is less than 3

Outline

choice()

bugs and seeding
significance
histograms

normail()

Example: change over time

s = Series(choice(10, size=5)) Ly
6- /

0 6

1 3

2 7 4 -

3 3 |

4 1

dtype: inté64 27

s.plot.line() ' 5] 3 3]

Example: change over time

s = Series(choice(10, size=5)) "
6-//////

0 6
1 >
2 7 4
3 3 3 1
4 1
dtype: inté64 2

[1-
s.plot.line() 0 1 2 3 4
percents = []

for 1 in range(l, len(s)):
diff = 100 * (s[i] / s[i-1] - 1)
percents.append(diff)
Series(percents).plot.line()

what are we computing for diff?

Example: change over time

s = Series(choice(10, size=5))

|

6

Q. & W N = O
=W d

type: inté64

= N W s O

s.plot.line() 0 1 3 3 A

percents = []
for 1 in range(l, len(s)):
diff = 100 * (s[i] / s[i-1] - 1)

~20

percents.append(diff)
Series(percents).plot.line() -40]
~60

what are we computing for diff: 00 05 10 15 20

Example: change over time

s = Series(choice(10, size=5))

|

6

Q. & W N = O
=W d

type: inté64

= N W s O

s.plot.line() 0 1 3 3 A

percents = []
for 1 in range(l, len(s)):
diff = 100 * (s[i] / s[i-1] - 1)

~20

percents.append(diff)
Series(percents).plot.line() -40]
~60

can you identify the bug in the code? 00 05 10 15 20

Example: change over time

s = Series(choice(10, size=5))

0 9 8
1 1 6.
2 0

3 8 a
4 8

dtype: inté64 2.
s.plot.line() 0.

percents = []
for 1 in range(l, len(s)):
diff = 100 * (s[i] / s[i-1] - 1)

perc ents. append (diff) /Library/Frameworks/Python. framework/Versions/3.7/1ib/

Series (percents) . plOt .line () python3.7/site-packages/ipykernel launcher.py:3: Runti
meWarning: divide by zero encountered in long scalars

This is separate from the ipykernel package so we ca
n avoid doing imports until

can you identify the bug in the code?

Not all bugs are equal!
scary bugs "nice" bugs

non-deterministic deterministic (reproducible)

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!

scary bugs

non-deterministic
system related
randomness

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

"nice" bugs

deterministic (reproducible)

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!
scary bugs "nice" bugs

non-deterministic
system related

deterministic (reproducible)

randomness
large data small data
semantic syntax

runtime

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!

scary bugs "nice" bugs
non-deterministic f deterministic (reproducible)
system related
randomness
large data small data

syntax

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!

scary bugs "nice" bugs

non-deterministic
system related
randomness

| deterministic (reproducible)
Seedlnq

small data

as syntax
w‘ '
runtime

large data

semantic

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Pseudorandom Generators

"Random"” generators are really just pseudorandom

s, “oo: | 559 | o2 | 192 | 635 | e]
57) 235 | 508 | 7207670 oo |

168 | 527 | 493 || 584 f53a | ... |
74 |[oes | 2os [ooa |52 |]

Pseudorandom Generators

Producing random numbers is like cruising down the tracks...

684 | sobEmR | 192 835 | ... |

235 908 720767 ... f

168 | 527 f 493 [s8a s34 ... |

In [39]: 1 choice(1000, size=3)|

Out[39]: array([684,559,629])

Pseudorandom Generators

Every run, you get on another tracks, so it feels random

684 || 559 [629 1924835 ...]|
37 1235 Joos f 727670 ... 0

MR 165 | 527 | 4935845340 ... |
74 |[oes | 2os [ooa |52 |]

Seeding

seeds \

100; 559|629 11921835 ... f

What if | told you that you can choose your track?

101; 235 908 720767 ... f

102 527§ 493 584534 ... |

ssaf2as feasfosz|... |

Seeding

What if | told you that you can choose your track?

In [11]: I np.random.seed(301)
2 choice(1000, size=3)

Out[1ll]: array([885, 320, 423])

In [12]: I np.random.seed(301)
2 choice(1000, size=3)

Out[1l2]: array([885, 320, 423)])

In [13]: I np.random.seed(301)

2 choice(1000, size=3)

Out[1l3]: array([885, 320, 423])

Seeding

Common approach for simulations:
1. seed using current time

2. print seed
3. use the seed for reproducing bugs, as necessary

In [28]: import time
. now = int(time.time())
print("seeding with", now)
np.random.seed (now)
choice (1000, size=3)

seeding with 1556673136

Out[28]: array([352, 734, 362])

Outline

choice()

bugs and seeding
significance
histograms

normail()

In a noisy world, what is noteworthy?

TOUR OF ACCOUNTING

OVER HERE
WE HAVE OUR

RANDOM NUMBER
GENERATOR.

www.dilbert.com scottadams@aol.com

NINE NINE
NINE NINE
NINE NINE

https://dilbert.com/strip/2001-10-25

10]as[o|© 2001 United Feature Syndicate, Inc.

ARE

YOU

SURE
THAT'S
RANDOM?

THAT'S THE
PROBLEM
WITH RAN-
DOMNESS:
YOU CAN
NEVER BE
SURE.

https://dilbert.com/strip/2001-10-25

Is this coin biased?

Call shenanigans?

whoever has the coin cheated
(it's not 50/50 heads/tails)

Is this coin biased?

Call shenanigans?

a statistician might say we're
trying to decide if the evidence
that the coin isn't fair is

whoever has the coin cheated
(it's not 50/50 heads/tails)

Is this coin biased?

Call shenanigans? No.

Is this coin biased?

Call shenanigans? No.

Call shenanigans?

Is this coin biased?

Call shenanigans? No.

Call shenanigans? Yes.

Note: there is a non-zero probability that a
fair coin will do this, but the odds are slim

Is this coin biased?

Call shenanigans? No.

Call shenanigans? Yes.

Call shenanigans?

Call shenanigans?

55 million 45 million

Is this coin biased?

Call shenanigans? No.

Call shenanigans? Yes.

Call shenanigans? No.

Call shenanigans? Yes.

55 million 45 million

Is this coin biased?

Call shenanigans? No.

(55 million 45 miIIion) small skew over large samples is good evidence

Demo: CoinSim

Call shenanigans?

Strategy: simulate a fair coin

Demo: CoinSim

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38,

Demo: CoinSim

Call shenanigans?

60 40
we got 10 more heads than we expect on average

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

Demo: CoinSim

Call shenanigans?

60 40

we got 10 more heads than we expect on average
how common is this?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

Demo: CoinSim

Call shenanigans?

60 40

we got 10 more heads than we expect on average
how common is this?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10K times

(50,(61,)51, 44, 39, 43, 51, 49, 49,(38,) ...]

11 more 12 less

Outline

choice()

bugs and seeding
significance
histograms

normail()

Frequencies across categories

bars are a good way to view frequencies across categories

s = Series(["rock", "rock", "paper',
"scissors", "scissors', "scissors'"])

s.value counts().plot.bar(color="orange")

40 -

30 -

20 -

10

paper -
SCISSOIS -
rock -

Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9])

s.value counts().plot.bar(color="orange")

click to scroll output; double click to hide
& «\J Lo

1.5 1

1.0 1

0.5 -

0.0

(o)) o 0 0) —

numbers not ordered

Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9]1)

s.value counts().sort index().plot.bar(color="orange")

2.0 1

1.5

1.0-

0.5

0.0

o — e 0) (o)}

gap between 1 and 8 not obvious

Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9])

s—valtue—counts{}-sort—index{}-plot-bar{y
s.plot.hist()

0 2 4 6 8

Frequency
b b N
o wu o

O
wn

O
o

Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9])

s.plot.hist()

0.0 L : : , ‘
0 2 4 6 8

this kind of plot is called a histogram

Frequency
b b N
o wu o

o
wn

Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, O, 1, 8, 9, 9.2]7)

i_

a histogram "bins" nearby numbers to create discrete bars

s.plot.Hist()
both 0 and 0.1

Frequency
b b N
o wun o

o
wn

8

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist()

0.0 L : : , ‘
0 2 4 6 8

we can control the number of bins

Frequency
b b N
o wu o

o
wn

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist(bins=3)

3.0/
2.5 -
2.0 -
=
g
315-
L
1.0
0.5
0.0- ,
0 2 4 6 8

too few bins provides too little detail

Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist()

Frequency
. o -
(@) (00 o

©
~

O
N

0.0-

too many bins provides too much detail (equally bad)

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist()

0.0 L : : , ‘
0 2 4 6 8

numpy chooses the default bin boundaries

Frequency
b b N
o wu o

o
wn

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s+—vatue—counts{)-soert—index{)-pltot-bar{)

s.plot.Hist()

2.0 1
0.0 L . :
0 2 4 6 8 10

we can override the defaults

Frequency
b b
o un

o
w

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, O, 1, 8, 9, 9.2]7)

s.plot.hist()

2.0 1
0.0 L . :
0 2 4 6 8 10

this is easily done with range

Frequency
b b
o un

o
w

Demo: Visualize CoinSim Results

800

Frequency
S (@)}
(- (-
o o

N
(-
o

o

0 20 40 60 80 100

number of heads (out of 100)

Demo: Visualize CoinSim Results

800

Frequency
S (@)}
(- (-
o o

N
(-
o

0 20 40 60 80 100

number of heads (out of 100)

this shape resembles what we often call
a normal distribution or a "bell curve"

Demo: Visualize CoinSim Results

800

Frequency
N (@)}
- (-
(- o

N
(-
o

0 20 40 60 80 100

number of heads (out of 100)

this shape resembles what we often call
a normal distribution or a "bell curve"

iIn general, if we take large samples enough
times, the results will look like this
(we won't discuss exceptions here)

Demo: Visualize CoinSim Results

800

Frequency
s (@)}
(- (-
(- o

N
(-
o

0 20 40 60 80 100
number of heads (out of 100)
numpy can directly
generate random this shape resembles what we often call

numbers fitting a a@ormal distributio@or a "bell curve"

normal distribution
iIn general, if we take large samples enough
times, the results will look like this
(we won't discuss exceptions here)

Outline

choice()

bugs and seeding
significance
histograms

normal()

normal

from numpy.random import choice, normal
import numpy as np

for 1 in range(10):
print(normal())

normal

from numpy.random import choice, normal
import numpy as np

for 1 in range(10):
print(normal()) Output:

-0.18638553993371157
0.02888452916769247
1.2474561113726423
average is 0 (over many calls) —0.5388224399358179
-0.45143322136388525
-1.4001861112018241
0.28119371511868047
0.2608861898556597
-0.19246288728955144
0.2979572961710292

numbers closer to 0 more likely

-X just as likely as x

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist ()

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist ()

Frequency

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100)

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc=®, scale=C))

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc=®, scale=C))

try plugging in different values
(defaults are 0 and 1, respectively)

Demo: plot overlay

3000 -

N
-
-
(-

Frequency

1000 -

y .

0 20 40 60 80 100

Demo: plot overlay

3000 -

N
-
-
o

Frequency

1000 -

N

20 40 60 80 100

0
X L 10K samples of 100 coin flips

10K samples from normal(size=10000)

Demo: plot overlay

3000 -

1000 - \\\\\\\\\\\
0 . A

20 40 60 80 100

0
X L 10K samples of 100 coin flips

10K samples from normal(size=10000)

N
-
-
o

version 1

Frequency

goal: play with 1loc and scale arguments to normal until gray overlaps red

Demo: plot overlay

3500
3000 -
30001 | | 5,29
()
. < 2000 - version 2
-
(- o i
2 2000 - 8 1500
qg) 1000 -
= 500 -
1000 -]
0 20 40 60 80 100
0 ' A '

20 40 60 80 100

0
X L 10K samples of 100 coin flips

10K samples from normal(size=10000)

goal: play with 1loc and scale arguments to normal until gray overlaps red

Demo: plot overlay

3500
3000
3500
q 25
.) 3000 -
= 201
> = 2500 -
o 2000 2 §2OOO . version 3
= 10 3
@ 5 1500 -
L 5(&
1000 - 1000 -
500 - ‘
0 073 20 40 60 80 100
0 2 — — — N

X L 10K samples of 100 coin flips

10K samples from normal(size=10000)

goal: play with 1loc and scale arguments to normal until gray overlaps red

