
[301] Randomness
Tyler Caraza-Harter

Which series was randomly generated?
Which did I pick by hand?

1

2

Announcement 1: Recommended popular
stats books (for summer reading)

How to Measure Anything
by Douglas W. Hubbard

Thinking, Fast and Slow
by Daniel Kahneman

Statistics Done Wrong
by Alex Reinhart

The Signal and the Noise
by Nate Silver

Announcement 1: Recommended popular
stats books (for summer reading)

How to Measure Anything
by Douglas W. Hubbard

Thinking, Fast and Slow
by Daniel Kahneman

Statistics Done Wrong
by Alex Reinhart

The Signal and the Noise
by Nate Silver

Announcement 2: Course Evaluations

Section 2:
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=593535

Section 3:
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=593536

I always read all the feedback, so please take the time to
complete these!

https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=593535
https://aefis.wisc.edu/index.cfm/page/AefisCourseSection.surveyResults?courseSectionid=593536

Announcement 3: Final Exam Prep
Details: similar to midterms
• worth 20%

• 2 hours on May 8th at 7:45am (in the morning!)

• you can have a single page of notes (both sides), as usual

• cumulative, across whole semester

• prep for Friday review session

• watch your email for room details!

Recommended prep
• make sure you understand all the worksheet problems

• review the readings, especially anything I took the time to write myself

• review everything you got wrong on the midterms

• review the slides

• review the code you wrote for the projects

Things not on the old final that we covered this semester
• beautifulsoup

• randomness

Why Randomize?

Games

Security

Simulation

Why Randomize?

Games

Security

Simulation our focus

Outline

choice()

bugs and seeding

significance

histograms

normal()

New Functions Today

numpy.random:

• powerful collection of functions

• choice, normal

Series.plot.hist:

• similar to bar plot

• visualize spread of 

random results powerful collection of functions

choice
from numpy.random import choice, normal

choice
from numpy.random import choice, normal

result = choice()

list of things to
randomly choose from

choice
from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])

list of things to
randomly choose from

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors
https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

choice
from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

scissors

Output:

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

choice
from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

result = choice(["rock", "paper", "scissors"])
print(result)

scissors
rock

Output:

choice
from numpy.random import choice, normal

result = choice(["rock", "paper", "scissors"])
print(result)

result = choice(["rock", "paper", "scissors"])
print(result)

scissors
rock

Output:

each time choice is
called, a value is randomly

selected (will vary run to run)

choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

for simulation, we'll often want
to compute many random results

choice
from numpy.random import choice, normal

choice(["rock", "paper", "scissors"], size=5)

array(['rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')

it's list-like

Random values and Pandas
from numpy.random import choice, normal

random Series
Series(choice(["rock", "paper", "scissors"], size=5))

Random values and Pandas
from numpy.random import choice, normal

random Series
Series(choice(["rock", "paper", "scissors"], size=5))

Random values and Pandas
from numpy.random import choice, normal

random Series
DataFrame(choice(["rock", "paper", "scissors"],
 size=(5,2)))

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Question 2: how can we make it biased (if we want it to be)?

p=[...]

Random Strings vs. Random Ints
from numpy.random import choice, normal

random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])

Random Strings vs. Random Ints
from numpy.random import choice, normal

random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])

random int: 0, 1, or 2
choice([0, 1, 2])

Random Strings vs. Random Ints
from numpy.random import choice, normal

random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])

random int: 0, 1, or 2
choice([0, 1, 2])

random int (approach 2): 0, 1, or 2
choice(3)

same

Random Strings vs. Random Ints
from numpy.random import choice, normal

random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])

random int: 0, 1, or 2
choice([0, 1, 2])

random int (approach 2): 0, 1, or 2
choice(3)

random non-negative int

that is less than 3

same

Outline

choice()

bugs and seeding

significance

histograms

normal()

Example: change over time

s = Series(choice(10, size=5))

s.plot.line()

Example: change over time

s = Series(choice(10, size=5))

s.plot.line()

percents = []
for i in range(1, len(s)):
 diff = 100 * (s[i] / s[i-1] - 1)
 percents.append(diff)
Series(percents).plot.line()

what are we computing for diff?

Example: change over time

s = Series(choice(10, size=5))

s.plot.line()

percents = []
for i in range(1, len(s)):
 diff = 100 * (s[i] / s[i-1] - 1)
 percents.append(diff)
Series(percents).plot.line()

what are we computing for diff?

Example: change over time

s = Series(choice(10, size=5))

s.plot.line()

percents = []
for i in range(1, len(s)):
 diff = 100 * (s[i] / s[i-1] - 1)
 percents.append(diff)
Series(percents).plot.line()

can you identify the bug in the code?

Example: change over time

s = Series(choice(10, size=5))

s.plot.line()

percents = []
for i in range(1, len(s)):
 diff = 100 * (s[i] / s[i-1] - 1)
 percents.append(diff)
Series(percents).plot.line()

can you identify the bug in the code?

Not all bugs are equal!
scary bugs "nice" bugs

non-deterministic

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

deterministic (reproducible)

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!
scary bugs "nice" bugs

non-deterministic deterministic (reproducible)
system related

randomness

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!
scary bugs "nice" bugs

non-deterministic

large data small data

semantic syntax

runtime

system related

randomness

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

deterministic (reproducible)

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!
scary bugs "nice" bugs

non-deterministic

semantic syntax

runtime

system related

randomness

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

????

deterministic (reproducible)

large data small data

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!
scary bugs "nice" bugs

non-deterministic

semantic syntax

runtime

system related

randomness

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

assert

seeding
deterministic (reproducible)

large data small data

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Pseudorandom Generators
"Random" generators are really just pseudorandom

684 559 629 192 835 ...

 37 235 908 72 767 ...

168 527 493 584 534 ...

874 664 249 643 952 ...

Pseudorandom Generators
Producing random numbers is like cruising down the tracks...

684 559 629 192 835 ...

 37 235 908 72 767 ...

168 527 493 584 534 ...

874 664 249 643 952 ...

Pseudorandom Generators
Every run, you get on another tracks, so it feels random

684 559 629 192 835 ...

 37 235 908 72 767 ...

168 527 493 584 534 ...

874 664 249 643 952 ...

Seeding
What if I told you that you can choose your track?

684 559 629 192 835 ...

 37 235 908 72 767 ...

168 527 493 584 534 ...

874 664 249 643 952 ...

100:

101:

102:

...:

seeds

Seeding
What if I told you that you can choose your track?

Seeding

Common approach for simulations:

1. seed using current time

2. print seed

3. use the seed for reproducing bugs, as necessary

Outline

choice()

bugs and seeding

significance

histograms

normal()

https://dilbert.com/strip/2001-10-25

In a noisy world, what is noteworthy?

https://dilbert.com/strip/2001-10-25

Is this coin biased?

51 49

Call shenanigans?

whoever has the coin cheated
(it's not 50/50 heads/tails)

Is this coin biased?

51 49 a statistician might say we're
trying to decide if the evidence

that the coin isn't fair is
statistically significant

Call shenanigans?

whoever has the coin cheated
(it's not 50/50 heads/tails)

Is this coin biased?

51 49

Call shenanigans? No.

Is this coin biased?

51 49

Call shenanigans? No.

5 95

Call shenanigans?

Is this coin biased?

51 49

Call shenanigans? No.

5 95

Call shenanigans? Yes.

Note: there is a non-zero probability that a
fair coin will do this, but the odds are slim

Is this coin biased?

51 49

Call shenanigans? No.

5 95

Call shenanigans? Yes.

55 45

Call shenanigans?

55 million 45 million

Call shenanigans?

Is this coin biased?

51 49

Call shenanigans? No.

5 95

Call shenanigans? Yes.

55 45

Call shenanigans? No.

55 million 45 million

Call shenanigans? Yes.

Is this coin biased?

51 49

Call shenanigans? No.

5 95

Call shenanigans? Yes.

55 45

Call shenanigans? No.

55 million 45 million

Call shenanigans? Yes.

large skew is good evidence of shenanigans

small skew over large samples is good evidence

Demo: CoinSim

60 40

Call shenanigans?

Strategy: simulate a fair coin

Demo: CoinSim

60 40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice

2. count heads

3. repeat above 10K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

Demo: CoinSim

60 40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice

2. count heads

3. repeat above 10K times

we got 10 more heads than we expect on average

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

Demo: CoinSim

60 40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice

2. count heads

3. repeat above 10K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

we got 10 more heads than we expect on average
how common is this?

Demo: CoinSim

60 40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice

2. count heads

3. repeat above 10K times

[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

we got 10 more heads than we expect on average
how common is this?

11 more 12 less

Outline

choice()

bugs and seeding

significance

histograms

normal()

Frequencies across categories

s = Series(["rock", "rock", "paper",  
 "scissors", "scissors", "scissors"])

s.value_counts().plot.bar(color="orange")

bars are a good way to view frequencies across categories

Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().plot.bar(color="orange")

bars are a bad way to view frequencies across numbers

numbers not ordered

Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().sort_index().plot.bar(color="orange")

bars are a bad way to view frequencies across numbers

gap between 1 and 8 not obvious

Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().sort_index().plot.bar()  
s.plot.hist()

bars are a bad way to view frequencies across numbers

Frequencies across numbers

s = Series([0, 0, 1, 8, 9, 9])

s.value_counts().sort_index().plot.bar()  
s.plot.hist()

histograms are a good way to view frequencies across numbers

this kind of plot is called a histogram

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist()

a histogram "bins" nearby numbers to create discrete bars

histograms are a good way to view frequencies across numbers

both 0 and 0.1

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=10)

we can control the number of bins

histograms are a good way to view frequencies across numbers

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=3)

too few bins provides too little detail

histograms are a good way to view frequencies across numbers

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=100)

too many bins provides too much detail (equally bad)

histograms are a good way to view frequencies across numbers

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=10)

numpy chooses the default bin boundaries

histograms are a good way to view frequencies across numbers

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=[0,1,2,3,4,5,6,7,8,9,10])

we can override the defaults

histograms are a good way to view frequencies across numbers

Frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.value_counts().sort_index().plot.bar()  
s.plot.hist(bins=range(11))

this is easily done with range

histograms are a good way to view frequencies across numbers

Demo: Visualize CoinSim Results

number of heads (out of 100)

Demo: Visualize CoinSim Results

number of heads (out of 100)

this shape resembles what we often call
a normal distribution or a "bell curve"

Demo: Visualize CoinSim Results

number of heads (out of 100)

this shape resembles what we often call
a normal distribution or a "bell curve"

in general, if we take large samples enough
times, the results will look like this 
(we won't discuss exceptions here)

Demo: Visualize CoinSim Results

number of heads (out of 100)

this shape resembles what we often call
a normal distribution or a "bell curve"

in general, if we take large samples enough
times, the results will look like this 
(we won't discuss exceptions here)

numpy can directly

generate random

numbers fitting a

normal distribution

Outline

choice()

bugs and seeding

significance

histograms

normal()

normal
from numpy.random import choice, normal
import numpy as np

for i in range(10):
 print(normal())

normal
from numpy.random import choice, normal
import numpy as np

for i in range(10):
 print(normal())

-0.18638553993371157
0.02888452916769247
1.2474561113726423
-0.5388224399358179
-0.45143322136388525
-1.4001861112018241
0.28119371511868047
0.2608861898556597
-0.19246288728955144
0.2979572961710292

Output:

average is 0 (over many calls)

numbers closer to 0 more likely

-x just as likely as x

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist()

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist()

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100)

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc= , scale=)

normal
from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100, loc= , scale=)

try plugging in different values

(defaults are 0 and 1, respectively)

Demo: plot overlay

Demo: plot overlay

10K samples of 100 coin flips
10K samples from normal(size=10000)

Demo: plot overlay

10K samples of 100 coin flips
10K samples from normal(size=10000)

goal: play with loc and scale arguments to normal until gray overlaps red

version 1

Demo: plot overlay

10K samples of 100 coin flips
10K samples from normal(size=10000)

goal: play with loc and scale arguments to normal until gray overlaps red

version 2

Demo: plot overlay

10K samples of 100 coin flips
10K samples from normal(size=10000)

goal: play with loc and scale arguments to normal until gray overlaps red

version 3

