
[320] Welcome + First Lecture

Tyler Caraza-Harter

[reproducibility]

Welcome to the first ever offering of Data Programming II!

Builds on CS 301 220. https://stat.wisc.edu/undergraduate-data-science-studies/

CS 220 CS 320

writing correct code writing efficient code
using objects designing new types of objects

lists+dicts graphs+trees
analyzing datasets collecting+analyzing datasets

getting results getting reproducible results

plots animated visualizations

functions: f(obj) methods: obj.f()

tabular analysis simple machine learning

CS 301 content (for review): https://tyler.caraza-harter.com/cs301/fall19/schedule.html

https://stat.wisc.edu/undergraduate-data-science-studies/
https://stat.wisc.edu/undergraduate-data-science-studies/
https://tyler.caraza-harter.com/cs301/fall19/schedule.html
https://tyler.caraza-harter.com/cs301/fall19/schedule.html

Who am I?

Tyler Caraza-Harter
• Long time Badger
• Email: tharter@wisc.edu
• Just call me “Tyler”

Industry experience
• Worked at Microsoft on SQL Server and Cloud
• Other internships/collaborations:

Qualcomm, Google, Facebook, Tintri

More: https://wisc-ds-projects.github.io/f19/

interests

Plot by Megan Tabbutt (previous student)

civic "hacking" OpenLambda

mailto:tharter@wisc.edu
mailto:tharter@wisc.edu

Who are You?

Year in school?
• 1st year? 2nd? Junior/senior? Grad student?

Area of study
• Natural science, social science, engineering, business,

statistics, data science, other?

What CS courses have people taken before?
• CS 220/301 (the import one here)? CS 200? CS 300? CS 354?

Please fill this form: https://forms.gle/SdFHQq37txmqkkgq7. Why?
• Help me get to know you
• Get participation credit

https://forms.gle/SdFHQq37txmqkkgq7
https://forms.gle/SdFHQq37txmqkkgq7

Course Logistics

Class organization

Teams

• you'll be randomly assigned to a team of 4-7 students
• teams will last the whole semester
• some types of collaboration with team members are allowed

(not required) on graded work, such as projects+quizzes
• most collaboration with non-team members in not allowed

Staff

1. Instructor
2. Teaching Assistants
3. Mentors

we all provide office hours, and you can attend any that you prefer!

Class organization

Teams

• you'll be randomly assigned to a team of 4-7 students
• teams will last the whole semester
• some types of collaboration with team members are allowed

(not required) on graded work, such as projects+quizzes
• most collaboration with non-team members in not allowed

Staff

1. Instructor
2. Teaching Assistants
3. Mentors

head TA: in charge of projects
team TA: primary contact for team, same whole semester
grader TA: reviews projects (rotates weekly)

team mentor: meets weekly with your team, same whole semester

we all provide office hours, and you can attend any that you prefer!

Course Website

It's here: https://tyler.caraza-harter.com/cs320/f20/schedule.html

I'll also use Canvas for four things:
• general announcements
• quizzes
• help you keep track of your progress through lectures, labs, etc
• simple grade summaries (not feedback or exam answers)

read syllabus carefully
and checkout other content

https://tyler.caraza-harter.com/cs320/f20/schedule.html
https://tyler.caraza-harter.com/cs320/f20/schedule.html

Other Communication

Piazza
• find link on site
• don't post >5 lines of project-related code (considered cheating)
• pinned post will list office hours (me, TAs, mentors)

Email
• me: tharter@wisc.edu
• TAs: https://tyler.caraza-harter.com/cs320/f20/contact.html

Forms
• https://tyler.caraza-harter.com/cs320/f20/surveys.html
• Who are you? Feedback Form. Thank you!

mailto:tharter@wisc.edu
https://tyler.caraza-harter.com/cs320/f20/contact.html
mailto:tharter@wisc.edu
https://tyler.caraza-harter.com/cs320/f20/contact.html
https://tyler.caraza-harter.com/cs320/f20/surveys.html
https://tyler.caraza-harter.com/cs320/f20/surveys.html

Course Etiquette

Meetings

1. office hours are drop-in (no need to reserve)
2. email me to schedule individual meetings

Email

3. let us know your NetID (if not from netid@wisc.edu)
4. don't start new email thread if topic is the same
5. unless urgent, please give me 48 hours to respond before

following up (I'll try to be faster usually)
6. use your judgement about whether to email me or TA first
7. if general question, consider using piazza instead

mailto:netid@wisc.edu
mailto:netid@wisc.edu

Graded Work

14 Quizzes - 2% each
• after each week, anytime before deadline
• on Canvas, open book/notes
• can take together AT SAME TIME with team members

(no other human help)

7 Projects - 8% each
• format: notebook, module, or program
• part 1: you can collaborate with team
• part 2: must be individualy (only help from 320 staff)
• still a test.py, but more depends on TA evaluation (more plots)
• ask for specific feedback

(giving constructive criticism is a priority in CS 320)

Graded Work

Participation - 6%
• class surveys
• interacting with posted discussions
• active in weekly team meetings
• doing labs before projects
• etc.

1 Final - 10%
• short, open-ended project on topic of your choosing
• due at originally scheduled exam time
• more details/constraints when it gets closer...

Academic Misconduct

In Fall 2019, I made the following misconduct reports:
• 23 students for cheating on projects
• 2 past students for sharing solutions from past semesters
• 7 students for cheating on exams

How we'll keep the class fair
• run MOSS on submissions
• randomize exam question order

Please talk to me if you're
feeling overwhelmed with 320
or your semester in general!

Read syllabus to make sure you know what is and isn't OK.

It's not obvious! Especially this semester...

Reading: same as 301 and some others...

I'll post links to other online articles and my own notes

Lectures don't assume any reading prior to class

Any questions?
Drop an email, or better, post to piazza

Today's Lecture:
Reproducibility

Reproducibility (Fall 19 Grading for CS 301)

why was project 9 so problematic?

Discuss: how might we define "reproducibility" for a data scientist?

15 new terms to learn today...

reproducibility: others can run our analysis code and get same results
process:
byte:
process memory:
address:
encoding:
CPU:
instruction set:
operating system:
resource:
allocation:
abstraction:
virtual machine:
cloud:
ssh:

how many terms do you know already?

Big question: will my program run on someone else's computer?
 (not necessarily written in Python)

Things to match:

1 Hardware

2 Operating System

3 Dependencies next lecture

CPU

Hardware: Mental Model of Process Memory

Imagine...
• one huge list, per each running program process
• every entry in the list is an integer between 0 and 255 (aka a "byte")

indexes (aka "addresses")

values (bytes)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

Is this really all we have for state?

...

data

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

the [3,20] list starts at index address 8 in the giant list

the [11,22,33] list starts at address 12 in the giant list

...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 22 33 44 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

We'll think more rigorously about
performance in CS 320 (big-O notation)

0 0 0 8 0 8 0 0 3 20 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

PythonTutor's visualization

the x variable is at address 3

the y variable is at address 5

...

0 0 0 0 0 0 0 0 0 0 0 0 0 67 65 66

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

???

encoding:

code
65
66
67
68
...

letter
A
B
C
D
...f = open("file.txt", encoding="utf-8")

...

0 0 0 0 0 0 0 0 0 0 0 0 0 67 65 66

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

"CAB"

code
65
66
67
68
...

letter
A
B
C
D
...

encoding:

f = open("file.txt", encoding="utf-8")

...

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

code
5
8
33
...

operation
ADD
SUB
JUMP

...

while ????:
 i += 2
 # what line next?

Instruction Set

...

operator operand

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

add 2 to variable

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

go back to top of loop

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

Instruction Set

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

...

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

Instruction Set

for CPU X

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU Y

Hardware: Mental Model of CPU

Instruction Set

for CPU Y

code
5
8
33
...

operation
SUB
ADD

undefined
...

a CPU can only run programs that
use instructions it understands!

...

A Program and CPU need to "fit"

CPU Y

Program B

CPU X

Program A

CPU Y

Program B

CPU X

Program A

A Program and CPU need to "fit"

CPU X

Program A

CPU Y

Program B

why haven't we noticed this yet
for our Python programs?

Interpreters

CPU X

python.exe (X)

CPU Y

python.exe (Y)

program.py program.py
same

different

different

Interpreters (such as python.exe) make it easier to run the same code on different machines

A compiler is another tool for running the same code on different CPUs

python code

machine code

Interpreters

CPU X

python.exe (X)

CPU Y

python.exe (Y)

program.py program.py
same

different

different

Interpreters (such as python.exe) make it easier to run the same code on different machines

python code

machine code

Discuss: if all CPUs had the instruction set,
would we still need a Python interpreter?

Big question: will my program run on someone else's computer?
 (not necessarily written in Python)

Things to match:

1 Hardware

2 Operating System

3 Dependencies next lecture

CPU

1 Hardware

2 Operating System

3 Dependencies next lecture

[this semester]

many others...

Big question: will my program run on someone else's computer?
 (not necessarily written in Python)

Things to match:

OS jobs: Allocate and Abstract Resources

1 Allocation 2 Abstraction

Operating System

f = open("file.txt")
data = f.read()
f.close()

ignorant of
files/directories

inconvenient

convenient

CPU X

Process A

Process B

Process Z

...waiting

running

only one process can run on CPU at a time

OS decides

[like CPU, hard drive, etc]

Parallelism -- more later this semester...

Core 1

Proc A

Process E

Process Z

...waiting

running
processes

Core 2

Proc B

Core 1

Proc C

Core 2

Proc D

most modern CPUs actually
contain multiples CPUs (called

"cores") on a single chip

Later: how can we write programs
that run in parallel, going faster by

using multiple cores?

OS jobs: Allocate and Abstract Resources

1 Allocation 2 Abstraction

Operating System

f = open("file.txt")
data = f.read()
f.close()

ignorant of
files/directories

inconvenient

convenient

CPU X

Process A

Process B

Process Z

...waiting

running

only one process can run on CPU at a time

OS decides

[like CPU, hard drive, etc]

Harder to reproduce on different OS...

CPU X

bad.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

f = open("/data/file.txt")
...

Harder to reproduce on different OS...

CPU X

good.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

f = open("c:\data\file.txt")
...

Harder to reproduce on different OS...

CPU X

good.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

solution 1:
f = open(os.path.join("data", "file.txt"))
...

solution 2:
tell anybody reproducing your results to use the same OS!

tradeoffs?

VMs (Virtual Machines) popular virtual
machine software

Physical Machine
[CPU, memory, etc]

Mac Operating System

Virtual Machine Virtual Machine

Mac OS X
Programs

programs

Linux OS Windows OS

programs programs

With the right virtual machines created and operating systems installed, you could
run programs for Mac, Linux, and Windows -- at the same time without rebooting!

The Cloud
popular cloud providers

cloud providers let you rent VMs
in the cloud on hourly basis

(e.g., $15 / month)

VM VM VM VM

ssh session>

remote
connection

we'll use GCP virtual
machines this semester

[setup in Lab 1]

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

ssh user@best-linux.cs.wisc.edu
run in PowerShell/

bash to access CS lab

Linux
here

Windows, Mac, whatever

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

Big question: will my program run on someone else's computer?

Things to match:

1 Hardware

2 Operating System

3 Dependencies

Lecture Recap: Reproducibility

we'll use Ubuntu Linux on
virtual machines in the cloud

a program must fit the CPU;
python.exe will do this, so
program.py won't have to

next time: versioning

Recap of 15 new terms
reproducibility: others can run our analysis code and get same results
process: a running program
byte: integer between 0 and 255
process memory: a big "list" of bytes, per process, for all state
address: index in the big list
encoding: pairing of letters characters with numeric codes
CPU: chip that executes instructions, tracks position in code
instruction set: pairing of CPU instructions/ops with numeric codes
operating system: software that allocates+abstracts resources
resource: time on CPU, space in memory, space on SSD, etc
allocation: the giving of a resource to a process
abstraction: hiding inconvenient details with something easier to use
virtual machine: "fake" machine running on real physical machine
virtual machine: allows us to running additional operating systems
cloud: place where you can rent virtual machines and other services
ssh: secure shell -- tool that lets you remotely access another machine

