
[320] Search order
and Queue Structures

Tyler Caraza-Harter

Shortest Weighted Path

What path will DFS choose?

What path will BFS choose?

What path would you choose?

Your "to do" list
end
end

endfront

end

smallest/biggest

Stack

Queue

Priority Queue

Your "to do" list
end
end

endfront

end

smallest/biggest

Stack

Queue

Priority Queue

L.append(x)

x = L.pop(-1)

L.append(x)

L.append(x)

x = L.pop(0)

L.sort()
x = L.pop(-1) what operations are slow?

Your "to do" list
end
end

endfront

end

smallest/biggest

Stack

Queue

Priority Queue

L.append(x)

x = L.pop(-1)

L.append(x)

L.append(x)

x = L.pop(0)

L.sort()
x = L.pop(-1) what operations are slow?

!

!

Complexity: Time vs. Memory

def ratio_search(L, target):
 for n in L:
 for d in L:
 if n/d == target:
 return True
 return False

def list_ratios(L):
 ratios = []
 for n in L:
 for d in L:
 ratios.append(n/d)
 return ratios

if N is len(L) and f(N) is the number of steps, with is the Big-O complexity of each function?

Complexity: Time vs. Memory

def ratio_search(L, target):
 for n in L:
 for d in L:
 if n/d == target:
 return True
 return False

def list_ratios(L):
 ratios = []
 for n in L:
 for d in L:
 ratios.append(n/d)
 return ratios

if N is len(L) and f(N) is the max memory used, with is the Big-O complexity of each function?

Review: Stacks, Queues, Priority Queues
while len(todo):
 curr = todo.pop(0)

 # other code...
 # appends to todo

while len(todo):
 todo.sort()
 curr = todo.pop(0)

 # other code...
 # appends to todo

while len(todo):
 curr = todo.pop(-1)

 # other code...
 # appends to todo

1

2

3

A no optimization necessary

B use priority queue (heapq)

C use queue (deque)

pair the code with the optimizations

Review: Stacks, Queues, Priority Queues
while len(todo):
 curr = todo.pop(0)

 # other code...
 # appends to todo

while len(todo):
 todo.sort()
 curr = todo.pop(0)

 # other code...
 # appends to todo

while len(todo):
 curr = todo.pop(-1)

 # other code...
 # appends to todo

1

2

3

A no optimization necessary

B use priority queue (heapq)

C use queue (deque)

pair the code with the optimizations

Review: Search Order

How many grandchildren does A
have?

Assume any loop over a node's
edges goes left to right.

We want to find an A-to-Z path.

With DFS:
- what path is found?
- what is the traversal order?

With BFS:
- what path is found?
- what is the traversal order?

