
[320] Welcome + First Lecture

Tyler Caraza-Harter

[reproducibility]

Introductions

Tyler Caraza-Harter
• Long time Badger
• Email: tharter@wisc.edu
• Just call me “Tyler” (he/him)

Industry experience
• Worked at Microsoft on SQL Server and Cloud
• Other internships/collaborations:

Qualcomm, Google, Facebook, Tintri

More: https://wisc-ds-projects.github.io

interests

Plot by Zishan Bai & Dingyi Zhou (previous students)

civic "hacking" OpenLambda

mailto:tharter@wisc.edu

Who are You?

Year in school?
• 1st year? 2nd? Junior/senior? Grad student?

Area of study
• Natural science, social science, engineering, business,

statistics, data science, other?

What CS courses have people taken before?
• CS 220/301? CS 200? CS 300? CS 354?

Please fill this form (due today):
https://docs.google.com/forms/d/e/1FAIpQLSfz7K0cY2-VGCtxE4TQ-
zkcbcWTtzyLZQXCrgLyp6EfwU2jDg/viewform?usp=sf_link.
Why?
• Help me get to know you
• Get participation credit
• Group formation

https://docs.google.com/forms/d/e/1FAIpQLSfz7K0cY2-VGCtxE4TQ-zkcbcWTtzyLZQXCrgLyp6EfwU2jDg/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfz7K0cY2-VGCtxE4TQ-zkcbcWTtzyLZQXCrgLyp6EfwU2jDg/viewform?usp=sf_link

CS 320

CS 220

STAT 340

STAT 240

Related courses

L I S 461

Upper Level Data ScienceUpper Level Computer Science

CS 354

CS 252

CS 300

CS 200

CS 300

systems
(C)

programming
(Java)

data programming
(Python)

data modeling
(R)

ethics

P1 (Project 1) will help 300-to-320 students pickup Python.

Welcome to Data Programming II!
Builds on CS 301 220. https://stat.wisc.edu/undergraduate-data-science-studies/

CS 220 CS 320

writing correct code writing efficient code
using objects designing new types of objects

lists+dicts graphs+trees
analyzing datasets collecting+analyzing datasets

getting results getting reproducible results

plots animated visualizations

functions: f(obj) methods: obj.f()

tabular analysis simple machine learning

CS 301 content (for review): https://tyler.caraza-harter.com/cs301/fall19/schedule.html

https://stat.wisc.edu/undergraduate-data-science-studies/
https://tyler.caraza-harter.com/cs301/fall19/schedule.html

Course Logistics

Course Website

It's here: https://tyler.caraza-harter.com/cs320/f22/schedule.html

I'll also use Canvas for four things:
• general announcements
• quizzes
• online office hours
• simple grade summaries (not feedback or exam answers)

read syllabus carefully
and checkout other content

https://tyler.caraza-harter.com/cs320/f22/schedule.html

Scheduled Activities
Lectures

• 3 times weekly
• feel free to bring a laptop
• will often be recorded+posted online (questions will be recorded -- feel free to

save until after if you aren't comfortable being recorded)
• might not post if bad in-person attendance or technical issues

Lab

• Weekly on Mondays, bring a laptop
• Work through lab exercises with group mates
• 320 staff will walk around to answer questions
• Required for participation credit!
• Answer TopHat question what at lab (https://app.tophat.com/e/594996) or fill "Lab

Absence" each week for credit: https://tyler.caraza-harter.com/cs320/s22/
surveys.html. We'll occasionally cross-check TopHat with paper sign-in.

https://app.tophat.com/e/594996
https://tyler.caraza-harter.com/cs320/s22/surveys.html
https://tyler.caraza-harter.com/cs320/s22/surveys.html

Class organization: People

Teams

• you'll be assigned to a team of 4-7 students
• teams will last the whole semester
• some types of collaboration with team members are allowed

(not required) on graded work, such as projects+quizzes
• most collaboration with non-team members in not allowed

Staff

1. Instructor
2. Teaching Assistants (grad students)
3. Mentors (undergrads)

we all provide office hours, and you can attend any that you prefer!

Class organization: People

Teams

• you'll be assigned to a team of 4-7 students
• teams will last the whole semester
• some types of collaboration with team members are allowed

(not required) on graded work, such as projects+quizzes
• most collaboration with non-team members in not allowed

Staff

1. Instructor
2. Teaching Assistants
3. Mentors

head TA: in charge of projects
team TA: primary contact for team, same whole semester
grader TA: reviews projects (rotates weekly)

we all provide office hours, and you can attend any that you prefer!

Communication

Piazza
• find link on site
• don't post >5 lines of project-related code (considered cheating)

Email
• me: tharter@wisc.edu
• TAs: https://canvas.wisc.edu/courses/322105/pages/contact-info

Forms
• https://tyler.caraza-harter.com/cs320/f22/surveys.html
• Who are you? Feedback Form. Thank you! Grading Issues.

mailto:tharter@wisc.edu
https://canvas.wisc.edu/courses/322105/pages/contact-info
https://tyler.caraza-harter.com/cs320/f22/surveys.html

Course Etiquette
Meetings

1. office hours are drop-in (no need to reserve)
2. email me about individual meeting availability if needed

Email

3. let us know your NetID (if not from netid@wisc.edu)
4. don't start new email thread if topic is the same
5. CC team members when appropriate
6. unless urgent, please give me 48 hours to respond before

following up (I'll try to be faster usually)
7. use your judgement about whether to email me or TA first

(if one TA doesn't know something, ask me next before others)
8. if general question, consider using piazza instead if general interest

mailto:netid@wisc.edu

Graded Work: Exams/Quizzes

Final - 16%
• cumulative, individual, multi-choice, 2 hours
• one page notes, both sides

Ten Online Quizzes - 1% each
• cumulative, no time limit
• on Canvas, open book/notes
• can take together AT SAME TIME with team members

(no other human help allowed)

Midterms - 14% each
• cumulative, individual, multi-choice, 40 minutes
• one page notes, both sides
• in class

Graded Work: Projects+Participation

7 Projects - 6% each
• format: notebook, module, or program
• part 1: you can optionally collaborate with team
• part 2: must be individually (only help from 320 staff)
• still a tester.py, but more depends on TA evaluation

(more plots)
• ask for specific feedback

(giving constructive criticism is a priority in CS 320)

Participation - 4%
• lab attendance
• class surveys
• etc.

Time Commitment
Observations
• 10-12 hours per project

is typical
• 20% of students

sometimes spend 20+
hours on some projects

• students who were faster
early on were less likely
to complete the course

Typical Weekly Expectations
• 4 hours - lecture/lab
• 6 hours - project coding
• 2 hours - reading/quizzes/etc

Academic Misconduct

Since Fall 2019, I have made the following misconduct reports:
• 58 students for cheating on projects
• 2 past students for sharing solutions from past semesters
• 8 students for cheating on exams
• 1 student for faking participation

How we'll keep the class fair
• run MOSS on submissions
• randomize exam question order

Please talk to me if you're
feeling overwhelmed with 320
or your semester in general!

Read syllabus to make sure you know what is and isn't OK.

It's not obvious!

Reading: same as 220/301 and some others...

I'll post links to other online articles and my own notes

Lectures don't assume any reading prior to class

Tips for 320 Success

1. Just show up!
➡ Get 100% on participation, don't miss quizzes, submit group work

2. Use office hours
➡ we're idle after a project release and swamped before a deadline

3. Do labs before projects

4. Take the lead on group collaboration

5. Learn debugging

6. Run the tester often

7. If you're struggling, reach out -- the sooner, the better

Any questions?

Today's Lecture:
Reproducibility

Discuss: how might we define "reproducibility" for a data scientist?

Big question: will my program run on someone else's computer?
 (not necessarily written in Python)

Things to match:

1 Hardware

2 Operating System

3 Dependencies next lecture

CPU

Hardware: Mental Model of Process Memory

Imagine...
• one huge list, per each running program process, called "address space"
• every entry in the list is an integer between 0 and 255 (aka a "byte")

indexes (aka "addresses")

values (bytes)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

Is this really all we have for state?

...

data

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

the [3,20] list starts at index address 8 in the giant list

the [11,22,33] list starts at address 12 in the giant list

...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 22 33 44 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

We'll think more rigorously about
performance in CS 320 (big-O notation)

0 0 0 8 0 8 0 0 3 20 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

PythonTutor's visualization

the x variable is at address 3

the y variable is at address 5

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

Is this really all we have for state?

...

discuss: how?

0 0 0 0 0 0 0 0 0 0 0 0 0 67 65 66

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

???

encoding:

code
65
66
67
68
...

letter
A
B
C
D
...f = open("file.txt", encoding="utf-8")

...

0 0 0 0 0 0 0 0 0 0 0 0 0 67 65 66

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

"CAB"

code
65
66
67
68
...

letter
A
B
C
D
...

encoding:

f = open("file.txt", encoding="utf-8")

...

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

code
5
8
33
...

operation
ADD
SUB
JUMP

...

while ????:
 i += 2
 # what line next?

Instruction Set

...

operator operand

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

add 2 to variable

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

go back to top of loop

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

Instruction Set

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

...

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

Instruction Set

for CPU X

code
5
8
33
...

operation
ADD
SUB
JUMP

...

Hardware: Mental Model of CPU

Instruction Set

for CPU Y

code
5
8
33
...

operation
SUB
ADD

undefined
...

discuss: what would happen if a
CPU tried to execute an

instruction for a different CPU?

...

0 0 0 0 0 0 0 0 5 2 33 8 0 0

0 71 82 103 124 135 146 159 11

Instruction Set

for CPU X

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU Y

Hardware: Mental Model of CPU

Instruction Set

for CPU Y

code
5
8
33
...

operation
SUB
ADD

undefined
...

a CPU can only run programs that
use instructions it understands!

...

A Program and CPU need to "fit"

CPU Y

Program B

CPU X

Program A

CPU Y

Program B

CPU X

Program A

A Program and CPU need to "fit"

CPU X

Program A

CPU Y

Program B

why haven't we noticed this yet
for our Python programs?

Interpreters

CPU X

python.exe (X)

CPU Y

python.exe (Y)

program.py program.py
same

different

different

Interpreters (such as python.exe) make it easier to run the same code on different machines

A compiler is another tool for running the same code on different CPUs

python code

machine code

Interpreters

CPU X

python.exe (X)

CPU Y

python.exe (Y)

program.py program.py
same

different

different

Interpreters (such as python.exe) make it easier to run the same code on different machines

python code

machine code

Discuss: if all CPUs had the instruction set,
would we still need a Python interpreter?

Big question: will my program run on someone else's computer?
 (not necessarily written in Python)

Things to match:

1 Hardware

2 Operating System

3 Dependencies next lecture

CPU

1 Hardware

2 Operating System

3 Dependencies next lecture

[this semester]

many others...

Big question: will my program run on someone else's computer?
 (not necessarily written in Python)

Things to match:

OS jobs: Allocate and Abstract Resources

1 Allocation 2 Abstraction

Operating System

f = open("file.txt")
data = f.read()
f.close()

ignorant of
files/directories

inconvenient

convenient

CPU X

Process A

Process B

Process Z

...waiting

running

only one process can run on CPU at a time
(or a few things if the CPU has multiple "cores")

OS decides

[like CPU, hard drive, etc]

Harder to reproduce on different OS...

CPU X

bad.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

f = open("/data/file.txt")
...

Harder to reproduce on different OS...

CPU X

good.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

f = open("c:\data\file.txt")
...

Harder to reproduce on different OS...

CPU X

good.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

solution 1:
f = open(os.path.join("data", "file.txt"))
...

solution 2:
tell anybody reproducing your results to use the same OS!

tradeoffs?

VMs (Virtual Machines) popular virtual
machine software

Physical Machine
[CPU, memory, etc]

Mac Operating System

Virtual Machine Virtual Machine

Mac OS X
Programs

programs

Linux OS Windows OS

programs programs

With the right virtual machines created and operating systems installed, you could
run programs for Mac, Linux, and Windows -- at the same time without rebooting!

The Cloud
popular cloud providers

cloud providers let you rent VMs
in the cloud on hourly basis

(e.g., $15 / month)

VM VM VM VM

ssh session>

remote
connection

we'll use GCP virtual
machines this semester

[setup in lab]

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

ssh user@best-linux.cs.wisc.edu
run in PowerShell/

bash to access CS lab

Linux
here

Windows, Mac, whatever

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

Big question: will my program run on someone else's computer?

Things to match:

1 Hardware

2 Operating System

3 Dependencies

Lecture Recap: Reproducibility

we'll use Ubuntu Linux on
virtual machines in the cloud

a program must fit the CPU;
python.exe will do this, so
program.py won't have to

next time: versioning

Recap of 15 new terms
reproducibility: others can run our analysis code and get same results
process: a running program
byte: integer between 0 and 255
address space: a big "list" of bytes, per process, for all state
address: index in the big list
encoding: pairing of letters characters with numeric codes
CPU: chip that executes instructions, tracks position in code
instruction set: pairing of CPU instructions/ops with numeric codes
operating system: software that allocates+abstracts resources
resource: time on CPU, space in memory, space on SSD, etc
allocation: the giving of a resource to a process
abstraction: hiding inconvenient details with something easier to use
virtual machine: "fake" machine running on real physical machine
virtual machine: allows us to run additional operating systems
cloud: place where you can rent virtual machines and other services
ssh: secure shell -- tool that lets you remotely access another machine

