
[320] Version Control (git)
Tyler Caraza-Harter

Big question: will my program run on someone else's computer? 

Things to match:

1 Hardware

2 Operating System

3 Dependencies

Reproducibility

we'll use Ubuntu Linux on
virtual machines in the cloud

a program must fit the CPU;
python.exe will do this, so
program.py won't have to

today: versioning

Dependency Versions

program.py

import os, sys, json
import pandas

import pandas

print("Pandas Version:", pandas.__version__)

code that uses pandas

behavior depends on which release was installed

this program "depends" on pandas

you can check a
module version

pip install pandas

pip install pandas==0.25.1

pip install pandas==0.24.0

or

or

or...

Versioning: motivation and basic concepts

Many tools auto-track history (e.g., Google Docs)

https://zapier.com/apps/google-docs/tutorials/google-docs-revision-history

what
changed

when
it changed

who
changed it

https://zapier.com/apps/google-docs/tutorials/google-docs-revision-history

Version Control Systems (VCS)
Useful for many kinds of projects
• code, papers, websites, etc
• manages all files for same project (maybe thousands) in a repository

Explicit snapshots/checkpoints, called commits
• users manually run commands to preserve good versions

Explicit commit messages
• who, what, when, why

Work can branch out and be merged back
• people can work offline
• can get feedback before merging
• humans need to resolve conflicts 

when versions being merged are 
too different

partner B also
working on hw.py,

without wif

partner A working
on hw.py at school

what happens when the plane lands?

Example

time

print("hi")

hello.py
print("hello")
print("world")

hello.py
import dog
dog.bark()

hello.py

def bark():
 print("bark"*10)

dog.py

add file edit file edit+add

commits:

at any point in time,
you just see one version

of the files on your computer

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Tyler

commit 2
msg: upgrade light
author: Tyler

commit 3
msg: save energy
author: Shri Shruthi

bug introduced
along with feature

somebody notices
bug after commit 3

who will get blamed?

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Tyler

commit 2
msg: upgrade light
author: Tyler

commit 3
msg: save energy
author: Shri Shruthi

bug introduced
along with feature

somebody notices
bug after commit 3

test.py: test.py: test.py:

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Tyler

commit 2
msg: upgrade light
author: Tyler

commit 3
msg: save energy
author: Shri Shruthi

test.py: test.py: test.py:

commit 4
msg: my bad, my bad!
author: Tyler

test.py:

Use case 2: versioned releases

time

1 2 3 4 5 6 7 8

which version would you use?

Use case 2: versioned releases

time

1 2 3 4 5 6 7 8

v1.0 v2.0 v2.1 v2.2

tag "good" commits to create releases

https://pypi.org/project/pandas/#history

https://github.com/pandas-dev/pandas/releases

https://pypi.org/project/pandas/#history
https://github.com/pandas-dev/pandas/releases

Use case 2: versioned releases

1 2 3 4 5a 6 7 8

v1.0 v2.0 v2.25b

v2.1

it's possible to branch out,
with some people adding features

(5a) and others debugging (5b)

Use case 3: feedback

main branch
of code

intern's personal branch
with experimental feature

Use case 3: feedback

main branch
of code

intern's personal branch
with experimental feature

can I merge my
code back to

the main branch?

git

Version Control System Tools

svn

git

Mercurial

TeamFoundation

tools

GitLab

BitBucket

GitHub:

git providers

Linus Torvalds developed
git to manage Linux as a
BitKeeper replacement

signup for a free account for
next weeks lab
- do choose a name that

won't embarrass you on
a resume

- do not post course work

https://www.linuxjournal.com/content/25-years-later-interview-linus-torvalds

https://www.linuxjournal.com/content/25-years-later-interview-linus-torvalds

Git Demos

https://github.com/cs320-wisc/f22

Activities:
• connect to a VM via SSH
• copy ("clone") the history from a GitHub repo to the VM
• view history
• switch between versions
• write ("commit") new versions

https://github.com/cs320-wisc/f22

HEAD, Branches, and Tags

Remembering commit numbers is a pain! Various kinds of labels
can serve as easy-to-remember aliases

HEAD

intern [branch]

main [branch]

experiment [branch]

v1.0 [tag] v2.0 [tag] v2.1 [tag]

HEAD: wherever you currently are (only one of these)
tag: label tied to a specific commit number
branch: label tied to end of chain (moves upon new commits)

HEAD, Branches, and Tags

What branch are we on?
git branch

Create new branch
git branch branchname

Switch branch
git checkout branchname

