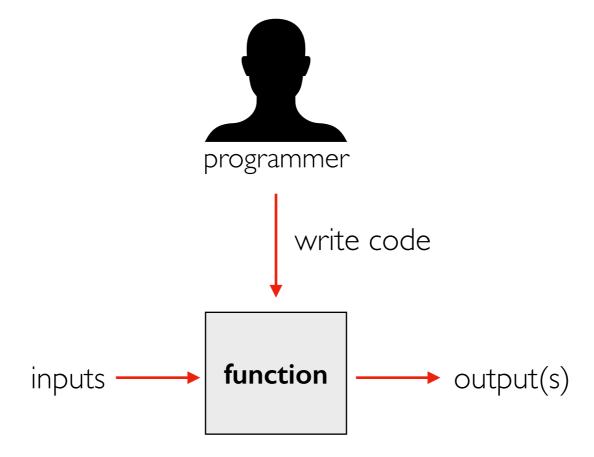
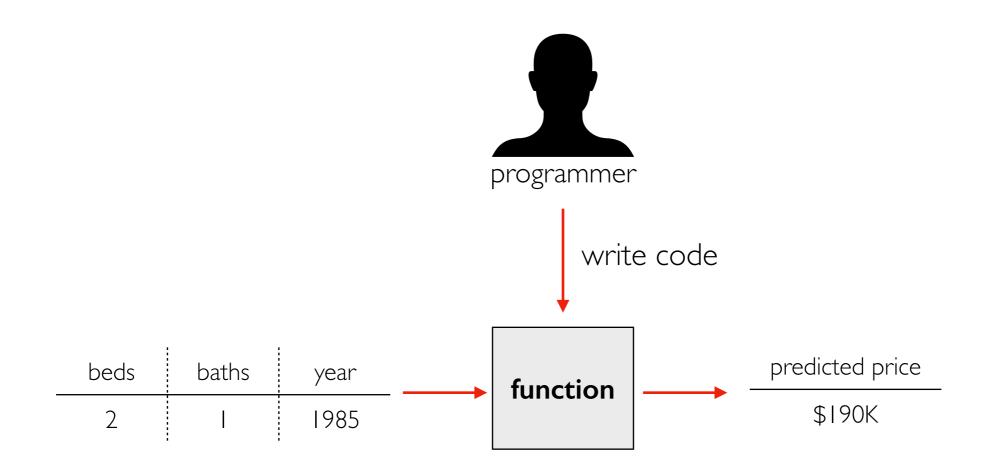
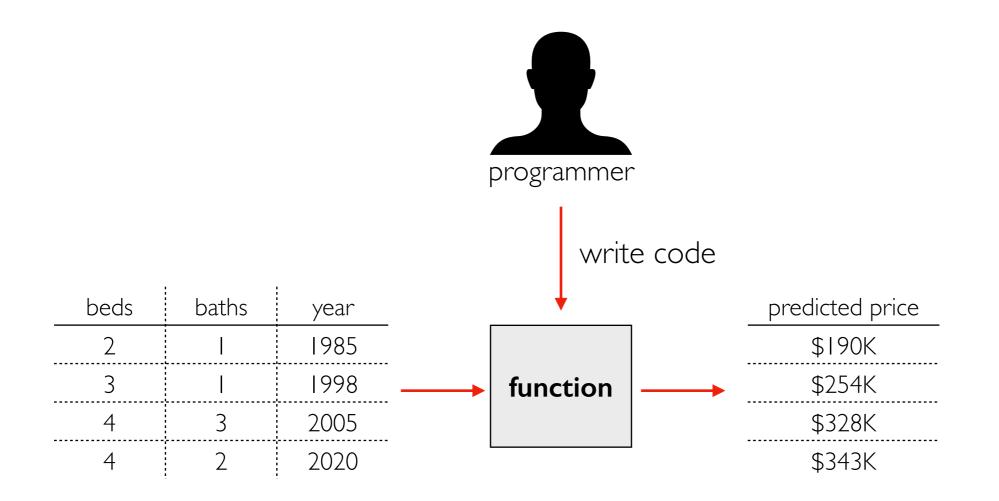
## [320] Machine Learning: Intro

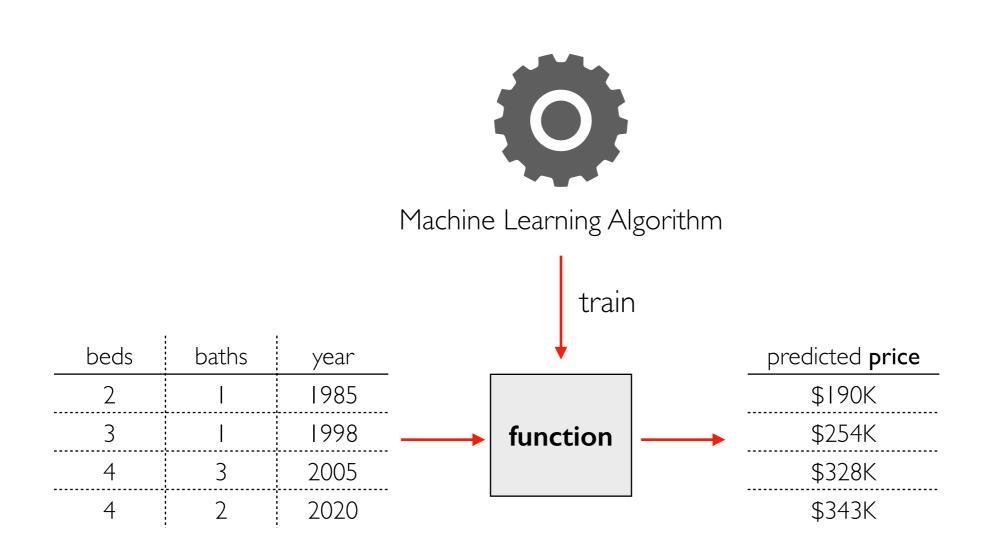
Tyler Caraza-Harter

## Functions/Models

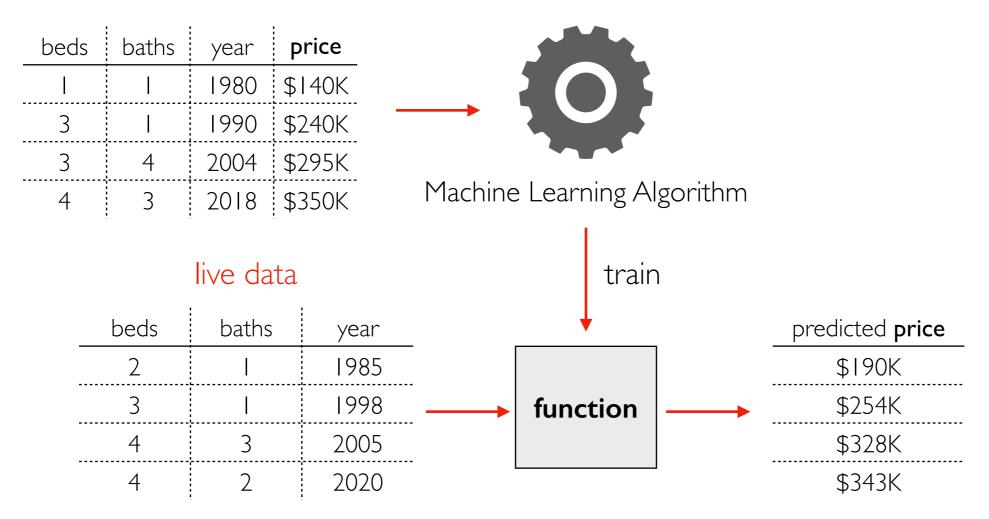




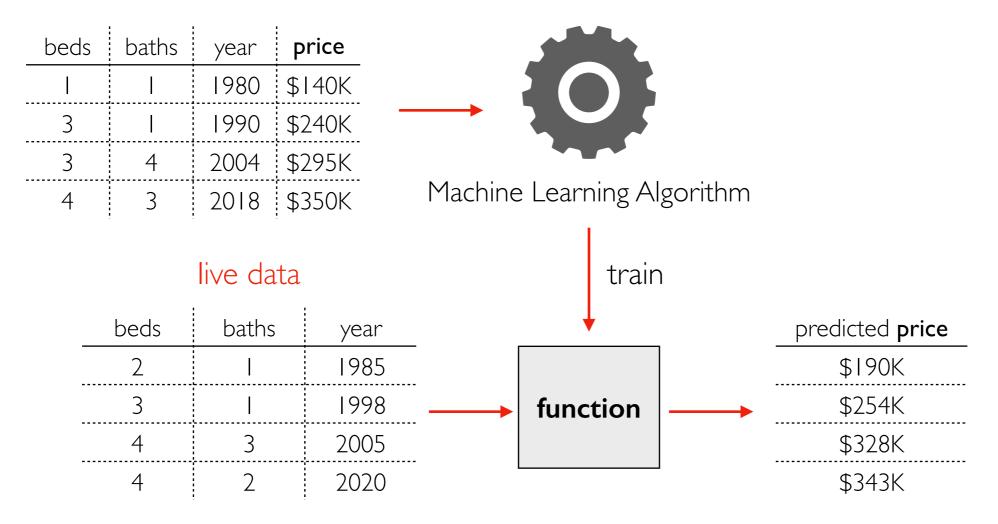




#### training data



#### training data

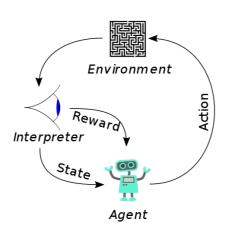


this is an example of a **regression** model, which in a type of **supervised machine learning**, which is one of the 3 main categories of ML

#### Machine Learning

Reinforcement Learning

not covered in CS 320



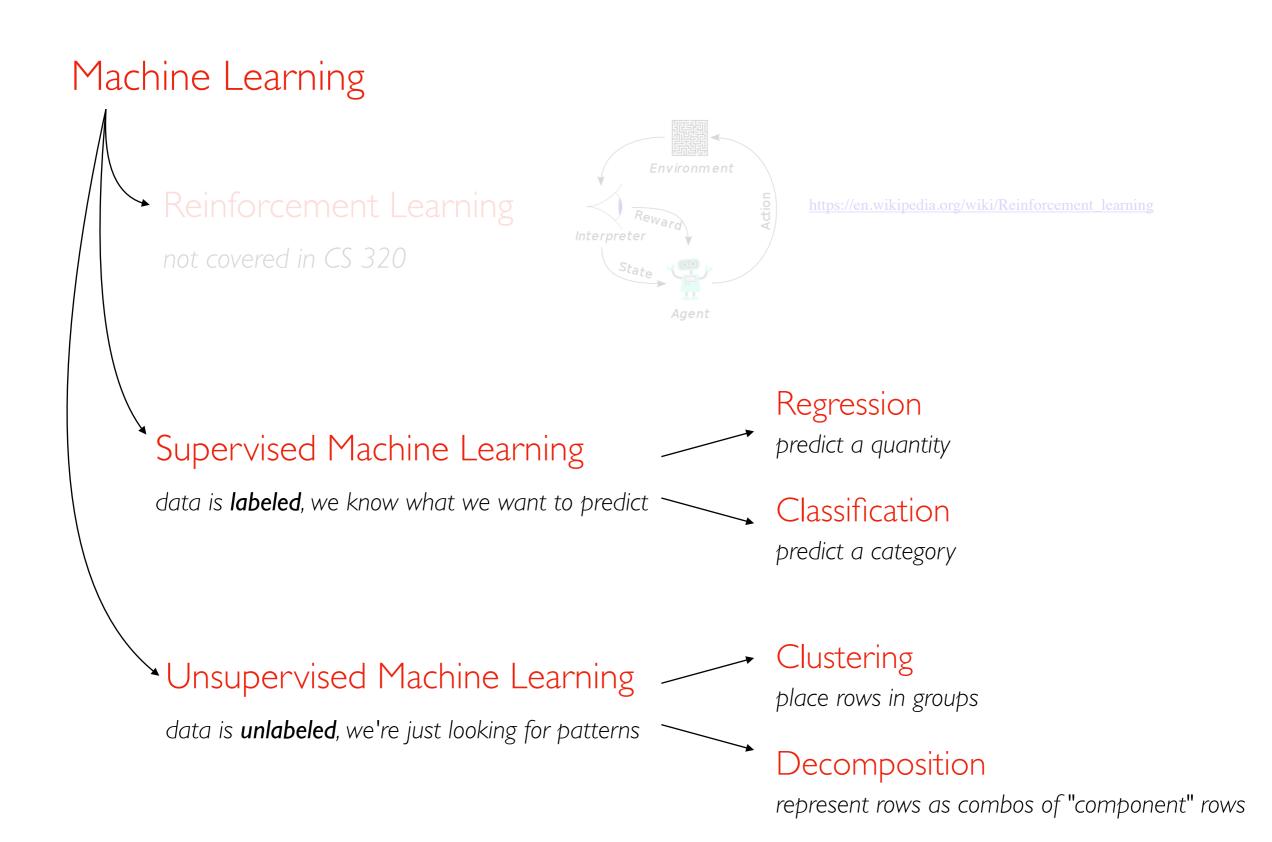
https://en.wikipedia.org/wiki/Reinforcement\_learning

#### Supervised Machine Learning

data is **labeled**, we know what we want to predict

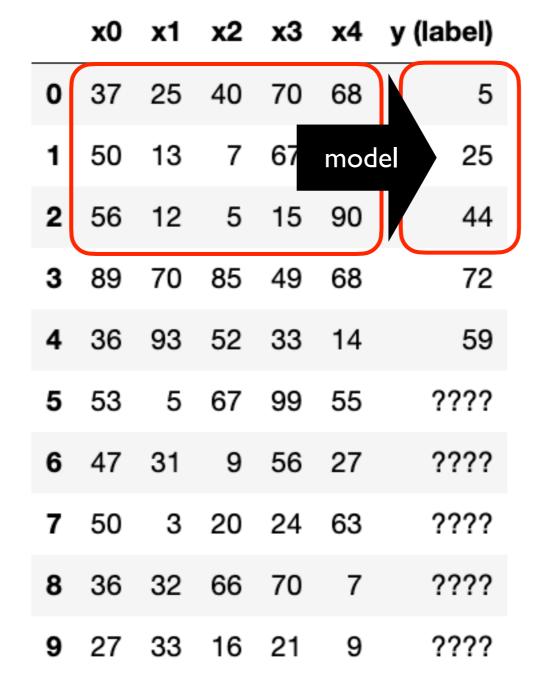
#### Unsupervised Machine Learning

data is **unlabeled**, we're just looking for patterns

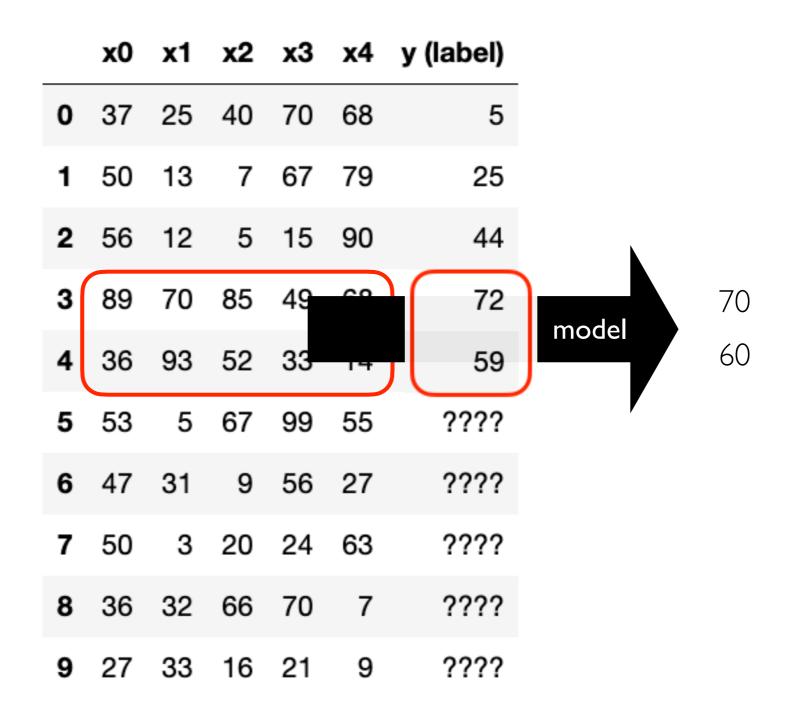


|   |    | fe        | eature |    |              |      |  |  |  |
|---|----|-----------|--------|----|--------------|------|--|--|--|
| ( | x0 | <b>x1</b> | x2     | х3 | x4 y (label) |      |  |  |  |
| 0 | 37 | 25        | 40     | 70 | 68           | 5    |  |  |  |
| 1 | 50 | 13        | 7      | 67 | 79           | 25   |  |  |  |
| 2 | 56 | 12        | 5      | 15 | 90           | 44   |  |  |  |
| 3 | 89 | 70        | 85     | 49 | 68           | 72   |  |  |  |
| 4 | 36 | 93        | 52     | 33 | 14           | 59   |  |  |  |
| 5 | 53 | 5         | 67     | 99 | 55           | ???? |  |  |  |
| 6 | 47 | 31        | 9      | 56 | 27           | ???? |  |  |  |
| 7 | 50 | 3         | 20     | 24 | 63           | ???? |  |  |  |
| 8 | 36 | 32        | 66     | 70 | 7            | ???? |  |  |  |
| 9 | 27 | 33        | 16     | 21 | 9            | ???? |  |  |  |

problem: can we predict an unknown **quantity** based on **features**?



train: fit a model to the relationship between some label (y) and feature (x's) values



**test**: make some predictions for known rows -- how close are we?

|   | <b>x0</b> | <b>x1</b> | x2 | х3 | <b>x4</b> | y (label) |
|---|-----------|-----------|----|----|-----------|-----------|
| 0 | 37        | 25        | 40 | 70 | 68        | 5         |
| 1 | 50        | 13        | 7  | 67 | 79        | 25        |
| 2 | 56        | 12        | 5  | 15 | 90        | 44        |
| 3 | 89        | 70        | 85 | 49 | 68        | 72        |
| 4 | 36        | 93        | 52 | 33 | 14        | 59        |
| 5 | 53        | 5         | 67 | 99 | 55        | ????      |
| 6 | 47        | 31        | 9  | 56 | 27        | ????      |
| 7 | 50        | 3         | 20 | 2  | mode      | ????      |
| 8 | 36        | 32        | 66 | 70 | 7         | ????      |
| 9 | 27        | 33        | 16 | 21 | 9         | ????      |

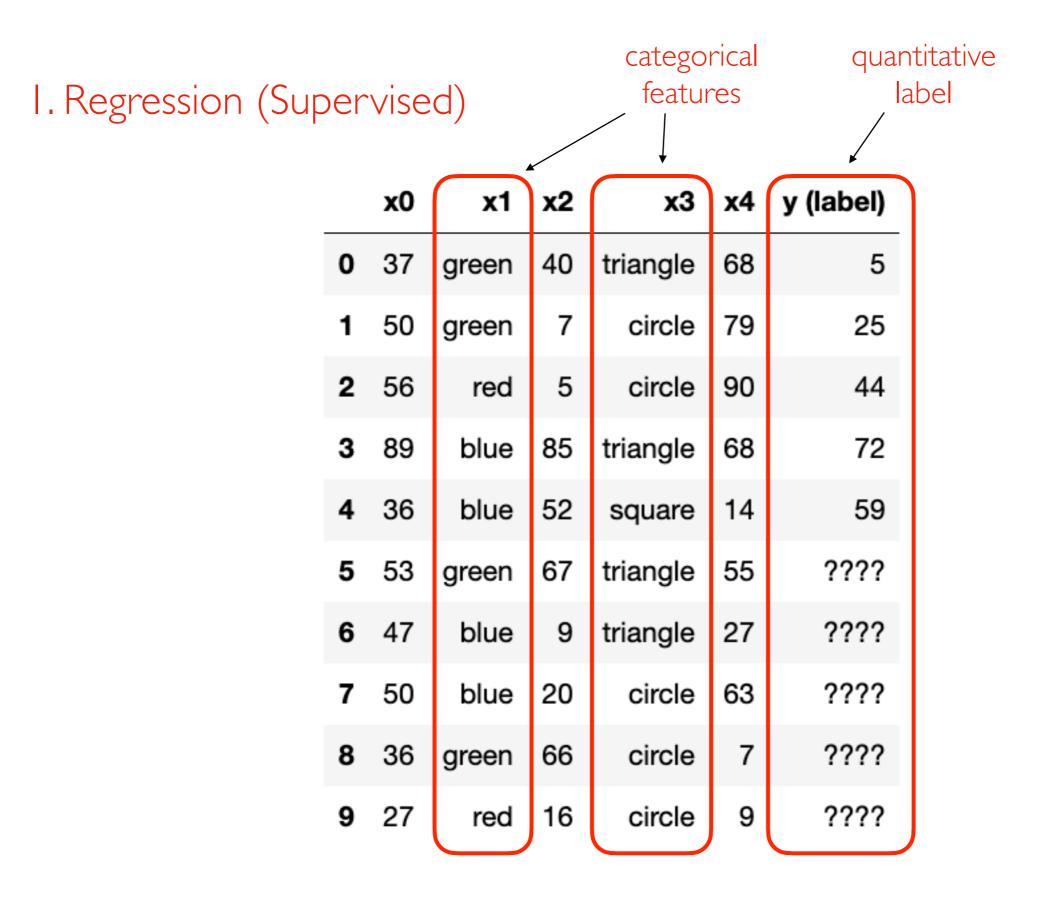
**production**: predict for actual unknowns

|   | <b>x0</b> | <b>x1</b> | x2 | х3 | <b>x4</b> | y (label) |
|---|-----------|-----------|----|----|-----------|-----------|
| 0 | 37        | 25        | 40 | 70 | 68        | 5         |
| 1 | 50        | 13        | 7  | 67 | 79        | 25        |
| 2 | 56        | 12        | 5  | 15 | 90        | 44        |
| 3 | 89        | 70        | 85 | 49 | 68        | 72        |
| 4 | 36        | 93        | 52 | 33 | 14        | 59        |
| 5 | 53        | 5         | 67 | 99 | 55        | 90        |
| 6 | 47        | 31        | 9  | 56 | 27        | 85        |
| 7 | 50        | 3         | 20 | 2  | mode      | 25        |
| 8 | 36        | 32        | 66 | 70 | 7         | 33        |
| 9 | 27        | 33        | 16 | 21 | 9         | 21        |

**production**: predict for actual unknowns

|   | <b>x0</b> | <b>x1</b> | x2 | х3 | <b>x4</b> | y (label) |
|---|-----------|-----------|----|----|-----------|-----------|
| 0 | 37        | 25        | 40 | 70 | 68        | 5         |
| 1 | 50        | 13        | 7  | 67 | 79        | 25        |
| 2 | 56        | 12        | 5  | 15 | 90        | 44        |
| 3 | 89        | 70        | 85 | 49 | 68        | 72        |
| 4 | 36        | 93        | 52 | 33 | 14        | 59        |
| 5 | 53        | 5         | 67 | 99 | 55        | 90        |
| 6 | 47        | 31        | 9  | 56 | 27        | 85        |
| 7 | 50        | 3         | 20 | 24 | 63        | 25        |
| 8 | 36        | 32        | 66 | 70 | 7         | 33        |
| 9 | 27        | 33        | 16 | 21 | 9         | 21        |

#### **interpret**: what can we learn by looking directly at the model?



a problem with some **categorical** features is still a regression as long as the lable is **quantitative** 

#### 2. Classification (Supervised)

categorical label

|   | <b>x0</b> | x1    | <b>x2</b> | x3       | <b>x4</b> | y (label) |
|---|-----------|-------|-----------|----------|-----------|-----------|
| 0 | 37        | green | 40        | triangle | 68        | orange    |
| 1 | 50        | green | 7         | circle   | 79        | pear      |
| 2 | 56        | red   | 5         | circle   | 90        | pear      |
| 3 | 89        | blue  | 85        | triangle | 68        | apple     |
| 4 | 36        | blue  | 52        | square   | 14        | pear      |
| 5 | 53        | green | 67        | triangle | 55        | ????      |
| 6 | 47        | blue  | 9         | triangle | 27        | ????      |
| 7 | 50        | blue  | 20        | circle   | 63        | ????      |
| 8 | 36        | green | 66        | circle   | 7         | ????      |
| 9 | 27        | red   | 16        | circle   | 9         | ????      |

problem: can we predict an unknown **category**?

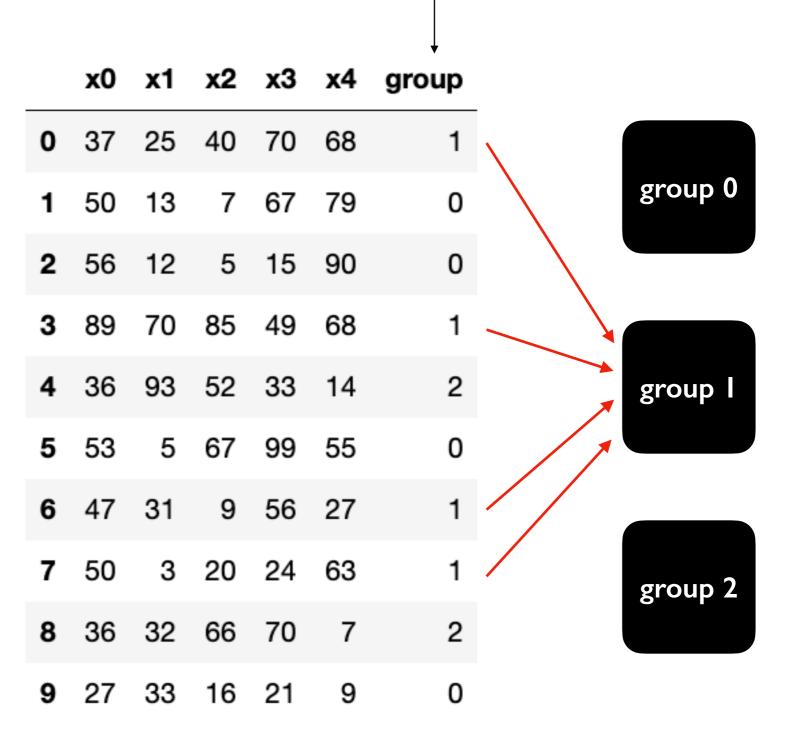
no label!

|   | x0 | x1 | x2 | x3 | x4 |
|---|----|----|----|----|----|
| 0 | 37 | 25 | 40 | 70 | 68 |
| 1 | 50 | 13 | 7  | 67 | 79 |
| 2 | 56 | 12 | 5  | 15 | 90 |
| 3 | 89 | 70 | 85 | 49 | 68 |
| 4 | 36 | 93 | 52 | 33 | 14 |
| 5 | 53 | 5  | 67 | 99 | 55 |
| 6 | 47 | 31 | 9  | 56 | 27 |
| 7 | 50 | 3  | 20 | 24 | 63 |
| 8 | 36 | 32 | 66 | 70 | 7  |
| 9 | 27 | 33 | 16 | 21 | 9  |

problem: can we organize data into groups of similar rows?

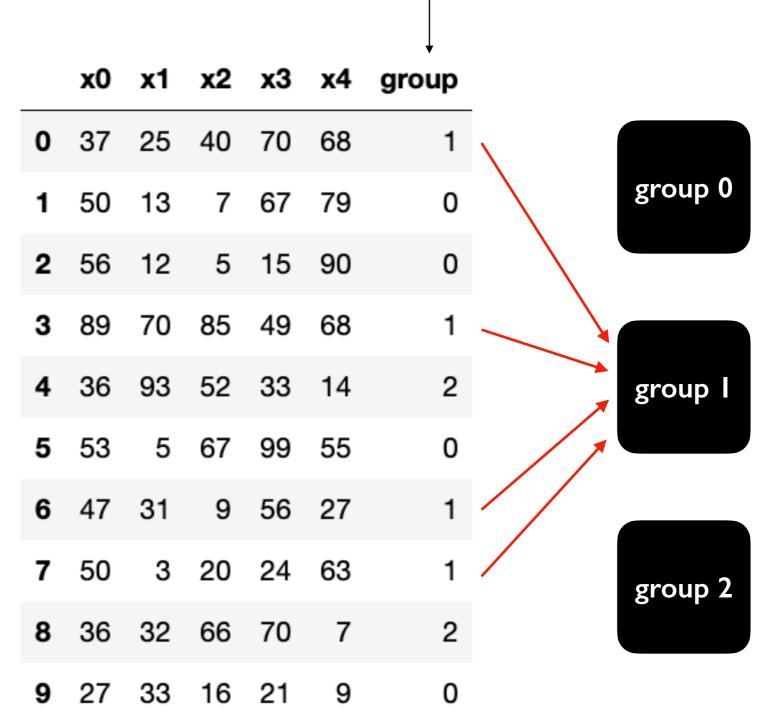
the algorithm decides groups

|   |           |           |    |    |           | +     |
|---|-----------|-----------|----|----|-----------|-------|
|   | <b>x0</b> | <b>x1</b> | x2 | х3 | <b>x4</b> | group |
| 0 | 37        | 25        | 40 | 70 | 68        | 1     |
| 1 | 50        | 13        | 7  | 67 | 79        | 0     |
| 2 | 56        | 12        | 5  | 15 | 90        | 0     |
| 3 | 89        | 70        | 85 | 49 | 68        | 1     |
| 4 | 36        | 93        | 52 | 33 | 14        | 2     |
| 5 | 53        | 5         | 67 | 99 | 55        | 0     |
| 6 | 47        | 31        | 9  | 56 | 27        | 1     |
| 7 | 50        | 3         | 20 | 24 | 63        | 1     |
| 8 | 36        | 32        | 66 | 70 | 7         | 2     |
| 9 | 27        | 33        | 16 | 21 | 9         | 0     |



the algorithm

decides groups



the algorithm

decides groups

there is no official grouping to check the model against, but a good grouping places similar rows together

|   | <b>x0</b> | <b>x1</b> | x2  | х3  | x4  |
|---|-----------|-----------|-----|-----|-----|
| 0 | -11       | -7        | 3   | 20  | 20  |
| 1 | 2         | -19       | -30 | 17  | 31  |
| 2 | 8         | -20       | -32 | -35 | 42  |
| 3 | 41        | 38        | 48  | -1  | 20  |
| 4 | -12       | 61        | 15  | -17 | -34 |
| 5 | 5         | -27       | 30  | 49  | 7   |
| 6 | -1        | -1        | -28 | 6   | -21 |
| 7 | 2         | -29       | -17 | -26 | 15  |
| 8 | -12       | 0         | 29  | 20  | -41 |
| 9 | -21       | 1         | -21 | -29 | -39 |

#### original data

#### components

|   | x0  | <b>x1</b> | x2  | x3  | x4  | -11 |   | x0   | <b>x1</b> | x2  | х3   | x4   |
|---|-----|-----------|-----|-----|-----|-----|---|------|-----------|-----|------|------|
| 0 | -11 | -7        | 3   | 20  | 20  |     | 0 | -0.0 | 0.6       | 0.5 | 0.1  | -0.6 |
| 1 | 2   | -19       | -30 | 17  | 31  | 21  | 1 | 0.3  | -0.2      | 0.5 | 0.6  | 0.5  |
| 2 | 8   | -20       | -32 | -35 | 42  | -8  | 2 | 0.4  | 0.5       | 0.1 | -0.6 | 0.5  |
| 3 | 41  | 38        | 48  | -1  | 20  |     |   |      |           |     |      |      |
| 4 | -12 | 61        | 15  | -17 | -34 |     |   |      |           |     |      |      |
| 5 | 5   | -27       | 30  | 49  | 7   |     |   |      |           |     |      |      |
| 6 | -1  | -1        | -28 | 6   | -21 |     |   |      |           |     |      |      |
| 7 | 2   | -29       | -17 | -26 | 15  |     |   |      |           |     |      |      |
| 8 | -12 | 0         | 29  | 20  | -41 |     |   |      |           |     |      |      |
| 9 | -21 | 1         | -21 | -29 | -39 |     |   |      |           |     |      |      |

#### x1 x2 xЗ x2 x3 х0 x4 х0 x1 x4 -11 -0.0 0.6 0.5 0 0.1 -0.6 3 20 **0** -11 20 -7 21 31 0.3 -0.2 0.5 0.6 0.5 2 -19 -30 1 17 -8 2 0.4 0.5 0.1 -0.6 8 -20 -32 -35 0.5 42 41 38 48 -1 20 **4** -12 61 15 -17 -34 weights 5 -27 30 49 7

|                  |   | pco | per | μυΖ |
|------------------|---|-----|-----|-----|
| $\left( \right)$ | 0 | -11 | 21  | -8  |
|                  | 1 | -43 | 12  | -6  |
|                  | 2 | -58 | -14 | 30  |
|                  | 3 | 36  | 41  | 53  |
|                  |   | 00  | 0.0 | 0.0 |

nc1

nc2

original data

-1 -1 -28

2 -29 -17 -26

6 -21

0 29 20 -41

1 -21 -29 -39

15

1

2

3

5

6

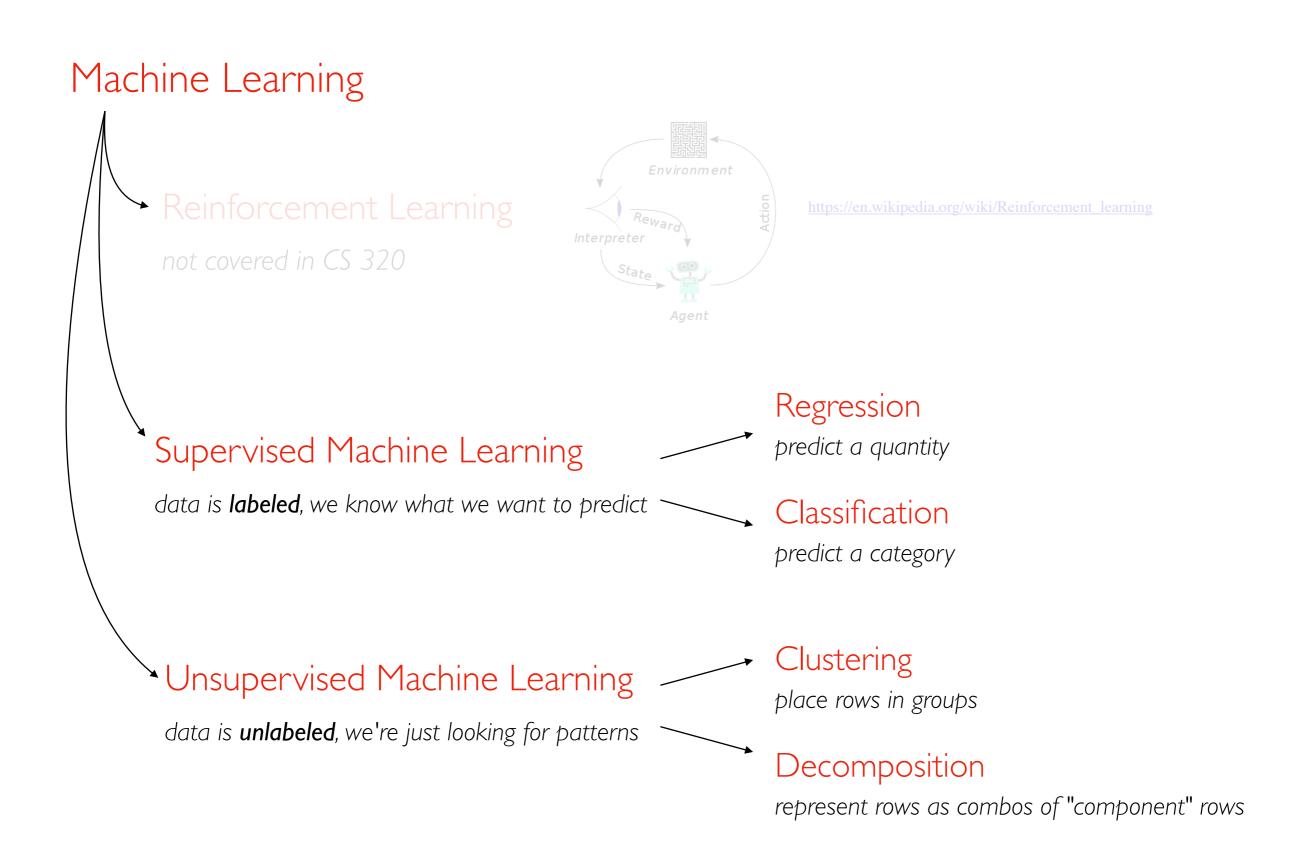
7

**8** -12

9 -21

components

|   |     | origii | nal da | ta  |     |     |   |      | cor       | npone  | ents |      |
|---|-----|--------|--------|-----|-----|-----|---|------|-----------|--------|------|------|
|   | x0  | x1     | x2     | x3  | x4  |     |   | x0   | x1        | x2     | х3   | x4   |
| 0 | -11 | -7     | 3      | 20  | 20  | -43 | 0 | -0.0 | 0.6       | 0.5    | 0.1  | -0.6 |
| 1 | 2   | -19    | -30    | 17  | 31  | 12  | 1 | 0.3  | -0.2      | 0.5    | 0.6  | 0.5  |
| 2 | 8   | -20    | -32    | -35 | 42  | -6  | 2 | 0.4  | 0.5       | 0.1    | -0.6 | 0.5  |
| 3 | 41  | 38     | 48     | -1  | 20  |     |   |      |           |        |      |      |
| 4 | -12 | 61     | 15     | -17 | -34 |     |   |      | $\bigvee$ | eights |      |      |
| 5 | 5   | -27    | 30     | 49  | 7   |     |   |      | pc0       | pc1    | pc2  |      |
| 6 | -1  | -1     | -28    | 6   | -21 |     |   | 0    | -11       | 21     | -8   |      |
| 7 | 2   | -29    | -17    | -26 | 15  |     |   | 1    | -43       | 12     | -6   |      |
| 8 | -12 | 0      | 29     | 20  | -41 |     |   | 2    | -58       | -14    | 30   |      |
| 9 | -21 | 1      | -21    | -29 | -39 |     |   | 3    | 36        | 41     | 53   |      |



this semester, we'll learn one technique in each of these four categories

# I. Regression (Supervised) + 2. Classification (Supervised)

linear\_model.LogisticRegression([penalty, ...])
linear\_model.LogisticRegressionCV(\*[, Cs, ...])
linear\_model.PassiveAggressiveClassifier(\*)
linear\_model.Perceptron(\*[, penalty, alpha, ...])
linear\_model.RidgeClassifier([alpha, ...])
linear\_model.RidgeClassifierCV([alphas, ...])
linear\_model.SGDClassifier([loss, penalty, ...])

linear\_model.LinearRegression(\*[, ...])
linear\_model.Ridge([alpha, fit\_intercept, ...])
linear\_model.RidgeCV([alphas, ...])
linear\_model.SGDRegressor([loss, penalty, ...])

svm.LinearSVC([penalty, loss, dual, tol, C, ...])
svm.LinearSVR(\*[, epsilon, tol, C, loss, ...])

tree.DecisionTreeClassifier
tree.DecisionTreeRegressor
tree.ExtraTreeClassifier
tree.ExtraTreeRegressor

neighbors.KNeighborsClassifier([...])
neighbors.KNeighborsRegressor([n\_neighbors, ...])

#### 3. Clustering (Unsupervised)

cluster.AffinityPropagation(\*[, damping, ...])
cluster.AgglomerativeClustering([...])
cluster.Birch(\*[, threshold, ...])
cluster.DBSCAN([eps, min\_samples, metric, ...])
cluster.FeatureAgglomeration([n\_clusters, ...])
cluster.KMeans([n\_clusters, init, n\_init, ...])
cluster.MiniBatchKMeans([n\_clusters, init, ...])
cluster.MeanShift(\*[, bandwidth, seeds, ...])
cluster.OPTICS(\*[, min\_samples, max\_eps, ...])
cluster.SpectralClustering([n\_clusters, ...])
cluster.SpectralBiclustering([n\_clusters, ...])

#### 4. Decomposition (Unsupervised)

decomposition.DictionaryLearning([...])
decomposition.FactorAnalysis([n\_components, ...])
decomposition.FastICA([n\_components, ...])
decomposition.IncrementalPCA([n\_components, ...])
decomposition.KernelPCA([n\_components, ...])
decomposition.LatentDirichletAllocation([...])
decomposition.MiniBatchDictionaryLearning([...])
decomposition.NME([n\_components, init, ...])
decomposition.PCA([n\_components, copy, ...])
decomposition.SparsePCA([n\_components, ...])
decomposition.SparseCoder(dictionary, \*[, ...])
decomposition.TruncatedSVD([n\_components, ...])

scikit-learn machine learning modules: https://scikit-learn.org/stable/modules/classes.html

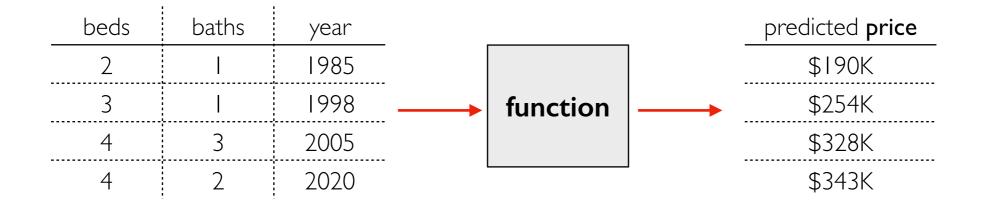
## Foundations: Modules and Math

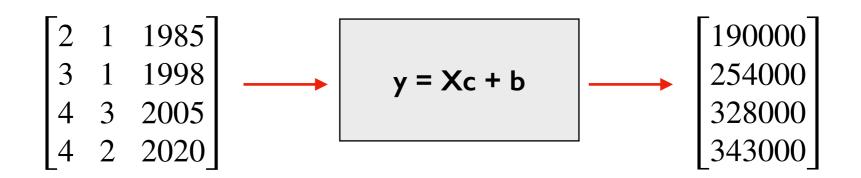
## Important Packages

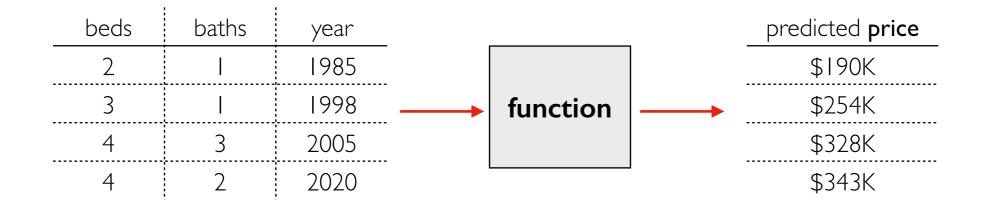
We'll be learning the following to do ML and related calculations efficiently:

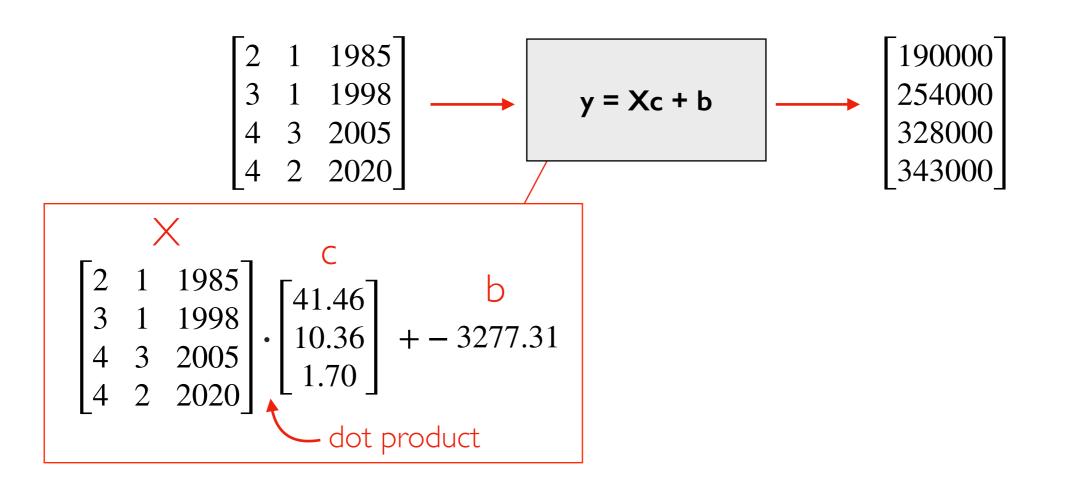


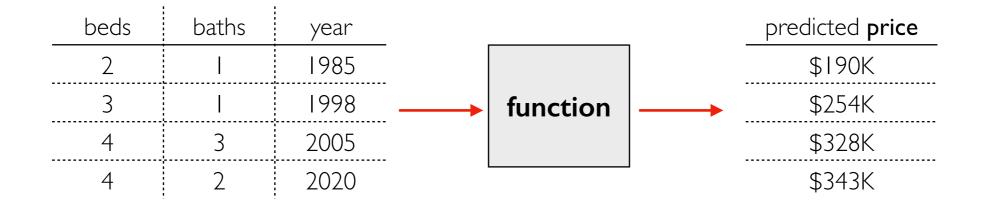
pip3 install numpy scikit-learn
pip3 install torch==1.4.0+cpu torchvision==0.5.0+cpu -f https://download.pytorch.org/whl/torch\_stable.html

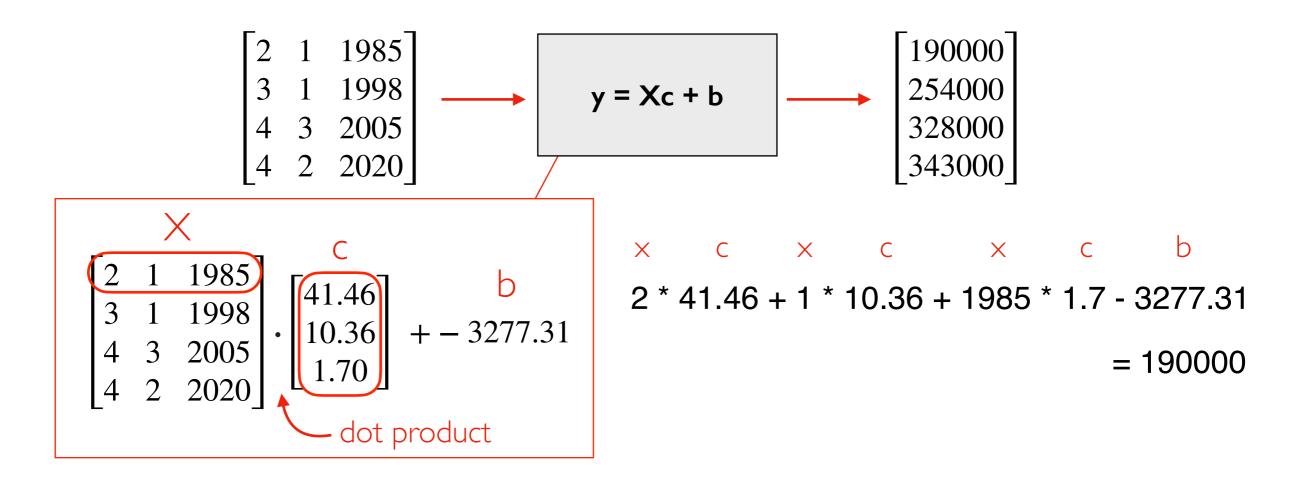


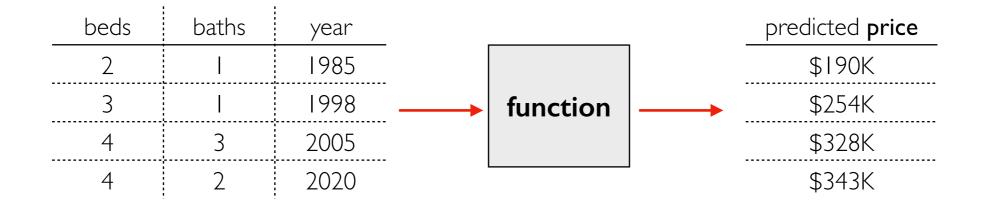


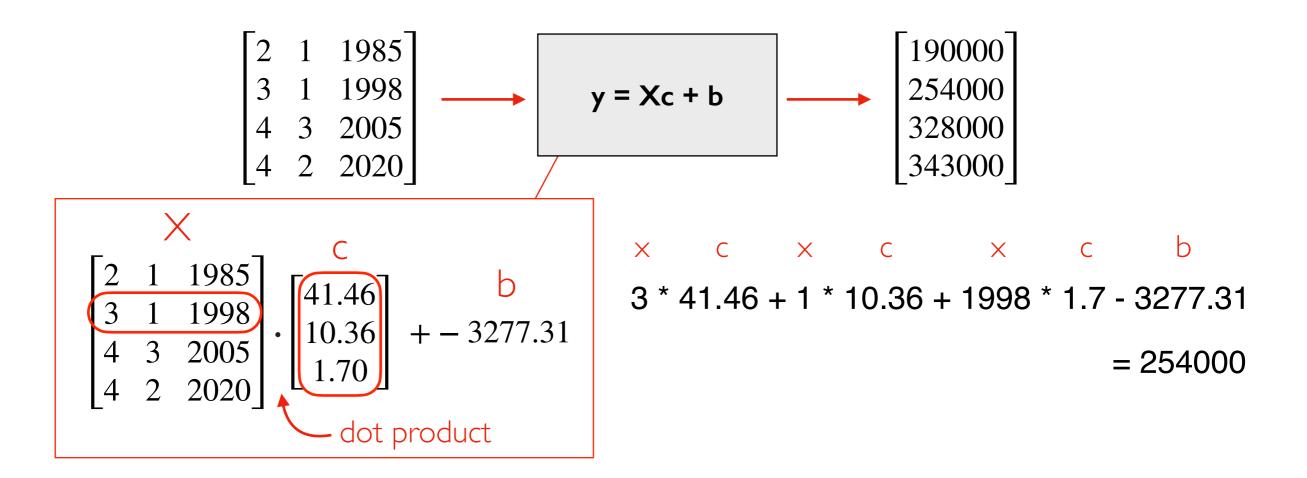


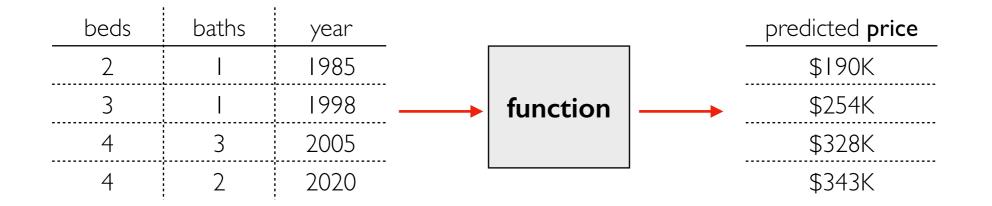


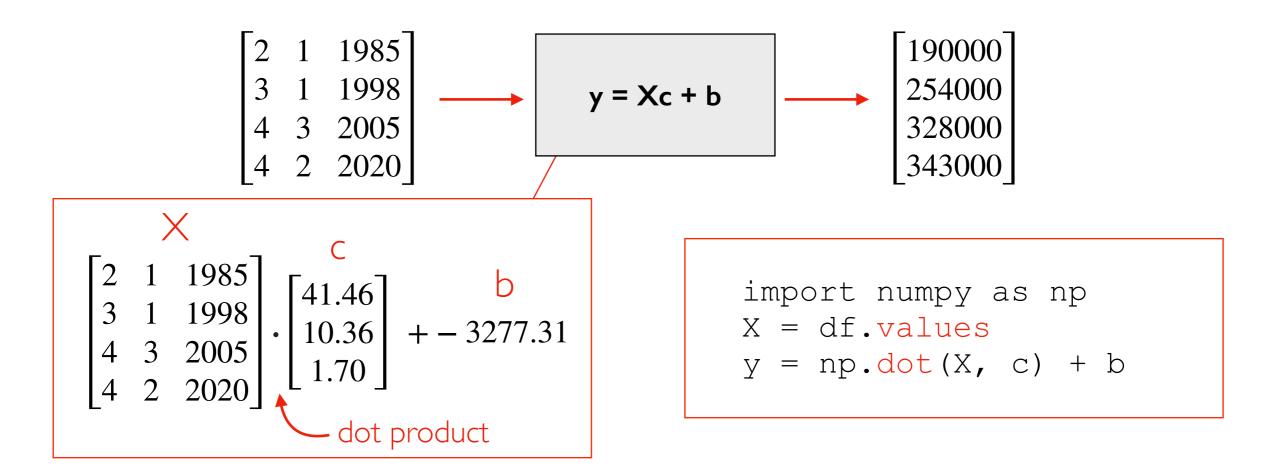


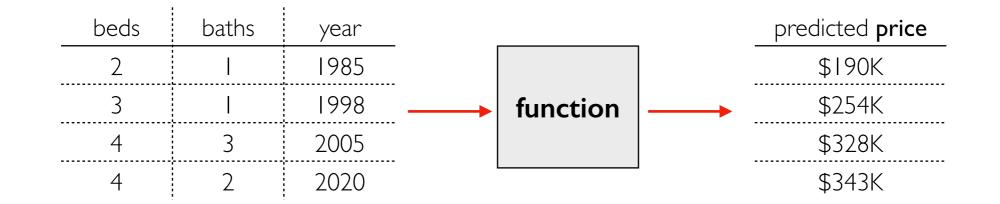


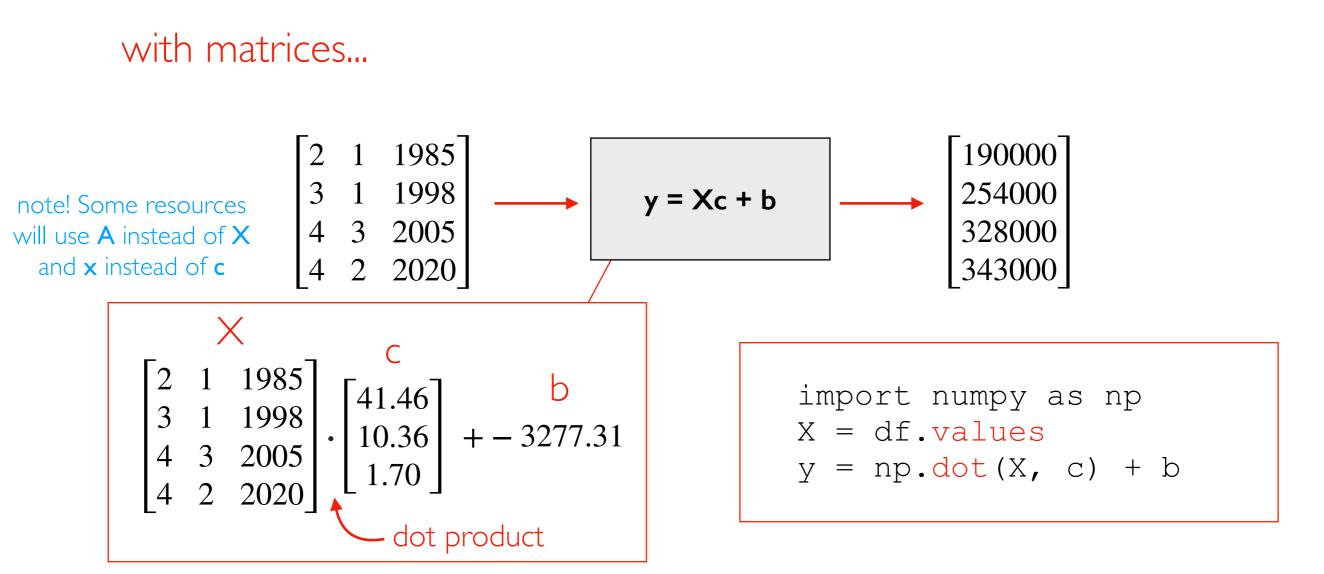




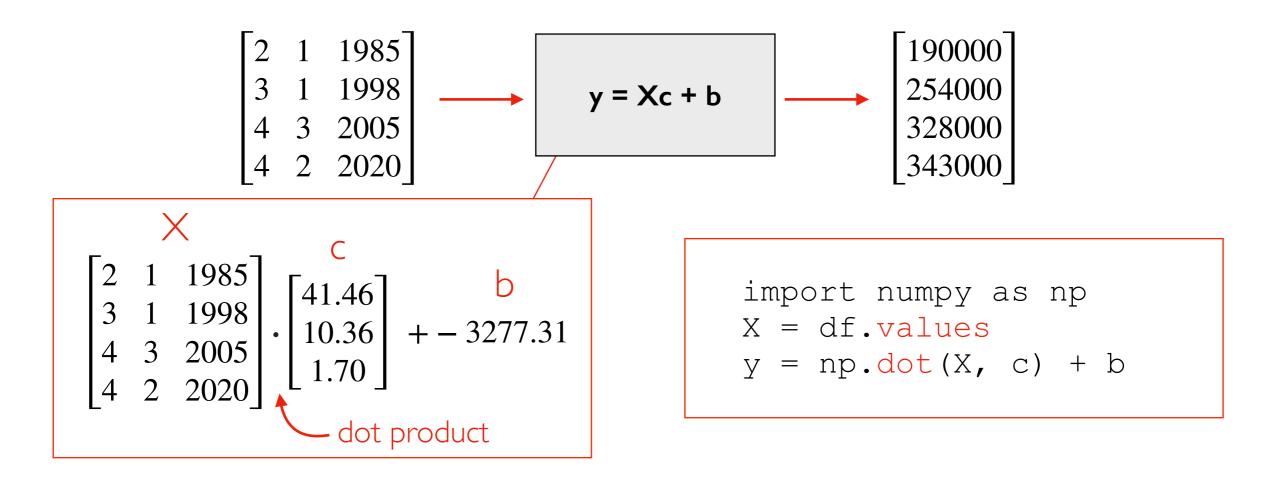








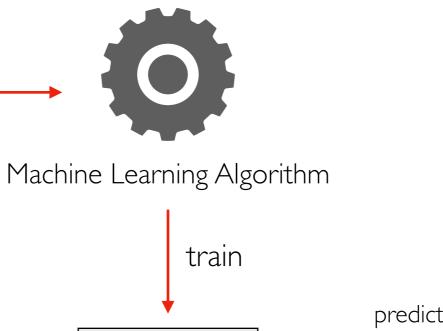
y = x \*\* 2 not linear y = 3\*c0 + -2\*c1 + 0.5\*c2 + ... + 10\*c49 linear

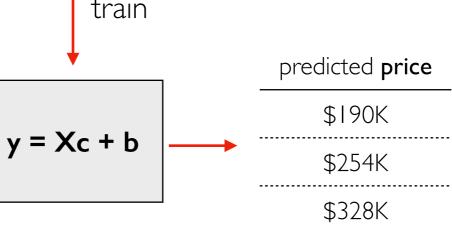


## Calculus

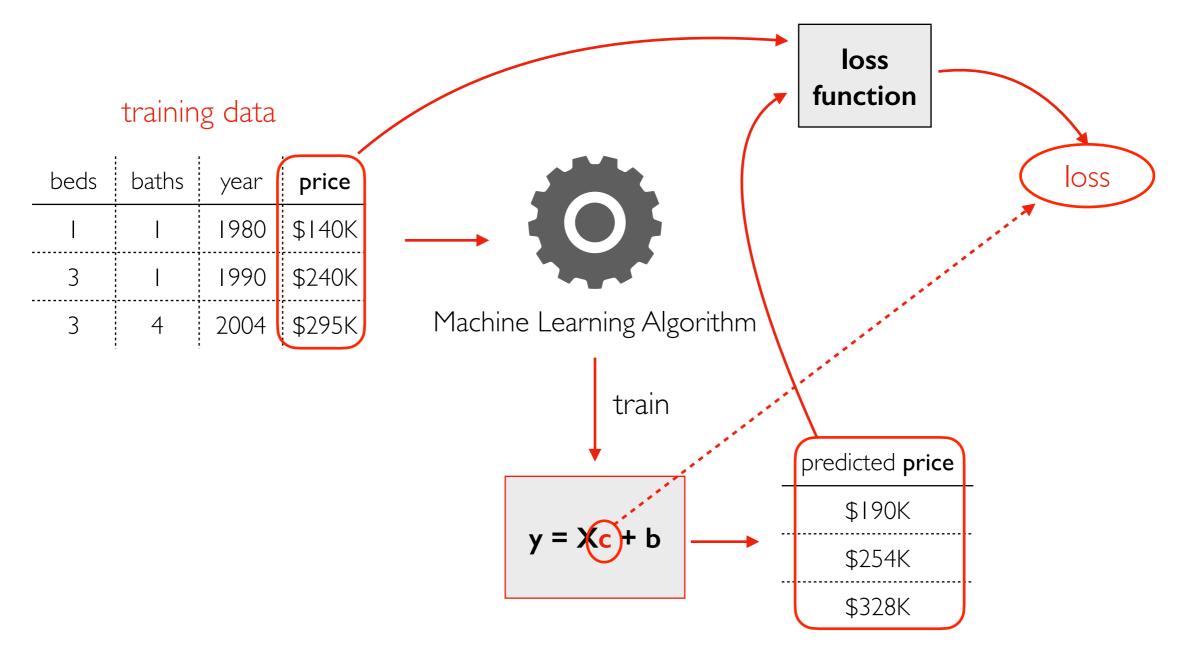
#### training data

| beds | baths | year | price  |
|------|-------|------|--------|
| I    | l     | 1980 | \$140K |
| 3    | l     | 1990 | \$240K |
| 3    | 4     | 2004 | \$295K |





## Calculus



how do we optimize **c** to minimize **loss**? Important concepts: derivative, gradient

## Parallelism

#### Parallelism

- doing multiple things at the same time
- requires multiple cores

#### GPUs (graphics processing units)

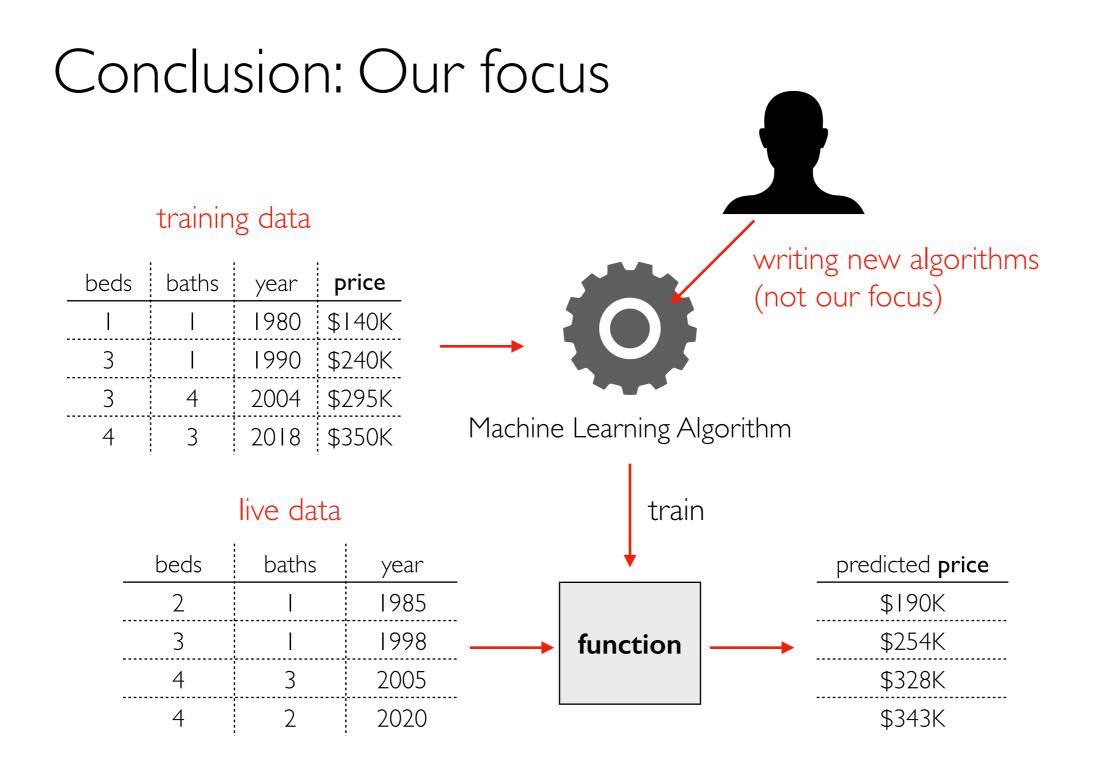
- graphics involves many of the same operation
- better to have many weaker cores working at once than fewer faster cores
- modern GPUs may have 1000s of cores (in contrast to 10s for CPUs)

#### Scientific Computing

- GPUs can greatly speed up key ML operations
  - multiplying matrices
  - computing gradients
- We'll learn pytorch for this...



## Conclusion: Developers vs. Users



## Conclusion: Our focus

how can we clean this up?

