
[320] Version Control (git)
Tyler Caraza-Harter

Review
A running program is called a ____________

fruits is a large list. Which will be faster?

1. fruits.insert(0, "pineapple") # adds to beginning of list

2. fruits.pop(-1) # removes from end of list

What is an example of resource that an operating system might allocate to a
process?

what does a Python code usually need to worry more about matching?

1. hardware (especially CPU's instruction set)

2. operating system

Review
A running program is called a ____________

fruits is a large list. Which will be faster?

1. fruits.insert(0, "pineapple") # adds to beginning of list

2. fruits.pop(-1) # removes from end of list

What is an example of resource that an operating system might allocate to a
process?

what does a Python code usually need to worry more about matching?

1. hardware (especially CPU's instruction set)

2. operating system

CPU X

good.py

Windows

Python Interpreter

Today's Reading

https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners

An Intro to Git and GitHub for Beginners (Tutorial)

https://mediaspace.wisc.edu/media/Tyler+Caraza-Harter-+IngrahamB10+9.6.2019+4.35.09PM/0_mrassgxd/129948022

Rusty on working in Shell?

https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners
https://mediaspace.wisc.edu/media/Tyler+Caraza-Harter-+IngrahamB10+9.6.2019+4.35.09PM/0_mrassgxd/129948022

Big question: will my program run on someone else's computer?

Things to match:

1 Hardware

2 Operating System

3 Dependencies

Reproducibility

we'll use Ubuntu Linux on
virtual machines in the cloud

a program must fit the CPU;
python.exe will do this, so
program.py won't have to

today: versioning

Dependency Versions

program.py

import os, sys, json
import pandas

import pandas

print("Pandas Version:", pandas.__version__)

code that uses pandas

behavior depends on which release was installed

this program "depends" on pandas

you can check a
module version

pip install pandas

pip install pandas==0.25.1

pip install pandas==0.24.0

or

or

or...

Versioning: motivation and basic concepts

Many tools auto-track history (e.g., Google Docs)

https://zapier.com/apps/google-docs/tutorials/google-docs-revision-history

what
changed

when
it changed

who
changed it

https://zapier.com/apps/google-docs/tutorials/google-docs-revision-history

Version Control Systems (VCS)
Useful for many kinds of projects
• code, papers, websites, etc
• manages all files in same project (maybe thousands)

Explicit snapshots/checkpoints, called commits
• users manually run commands to preserve good versions

Explicit commit messages
• who, what, when, why

Work can branch out and be merged back
• people can work offline
• can get feedback before merging
• humans need to resolve conflicts

when versions being merged are
too different

partner B also
working on hw.py,

without wifi

partner A working
on hw.py at school

what happens when the plane lands?

Example

time

print("hi")

hello.py
print("hello")
print("world")

hello.py
import dog
dog.bark()

hello.py

def bark():
 print("bark"*10)

dog.py

add file edit file edit+add

commits:

at any point in time,
you just see one version

of the files on your computer

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Tyler

commit 2
msg: upgrade light
author: Tyler

commit 3
msg: save energy
author: Sacha

bug introduced
along with feature

somebody notices
bug after commit 3

who will get blamed?

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Tyler

commit 2
msg: upgrade light
author: Tyler

commit 3
msg: save energy
author: Sacha

bug introduced
along with feature

somebody notices
bug after commit 3

test.py: test.py: test.py:

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Tyler

commit 2
msg: upgrade light
author: Tyler

commit 3
msg: save energy
author: Sacha

test.py: test.py: test.py:

commit 4
msg: my bad, my bad!
author: Tyler

test.py:

Use case 2: versioned releases

time

1 2 3 4 5 6 7 8

which version would you use?

Use case 2: versioned releases

time

1 2 3 4 5 6 7 8

v1.0 v2.0 v2.1 v2.2

tag "good" commits to create releases

https://pypi.org/project/pandas/#history

https://github.com/pandas-dev/pandas/releases

https://pypi.org/project/pandas/#history
https://github.com/pandas-dev/pandas/releases

Use case 2: versioned releases

1 2 3 4 5a 6 7 8

v1.0 v2.0 v2.25b

v2.1

it's possible to branch out,
with some people adding features

(5a) and others debugging (5b)

Use case 3: feedback

master branch
of code

intern's personal branch
with experimental feature

Use case 3: feedback

master branch
of code

intern's personal branch
with experimental feature

can I merge my
code back to

the master branch?

git

Version Control System Tools

svn

git

Mercurial

TeamFoundation

tools

GitLab

BitBucket

GitHub:

git providers

Linus Torvalds developed
git to manage Linux as a
BitKeeper replacement

signup for a free account for
next weeks lab
- do choose a name that

won't embarrass you on
a resume

- do not post course work

Viewing Commits

Download P1 repo (https://github.com/tylerharter/cs320-p1):
git clone https://github.com/tylerharter/cs320-p1.git

cd cs320-p1

View Commits (newest on top)
git log

git checkout ?????

commit 6d7beafb8e79b7a92fed8e67673a33bb7f607dbe
Author: Ada <ada@example.com>
Date: Thu Jan 9 13:53:20 2020 -0600

 count a specific word

6d7b... b0df... 7616... 6f5c... f37e... c10b... f637... 4e41...

commiter
message

commit number in
hexadecimal (hexsha)

binary: 0,1
decimal: 0,1,2,3,4,5,6,7,8,9
hex: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

https://github.com/tylerharter/cs320-p1
https://github.com/tylerharter/cs320-p1.git

Creating Commits

View status of files
git status

Move file to staging
git add file.txt

Create a commit (take a snapshot of staged changes)
git commit -m "I made a change!"

Configure your name/email
git config --global user.name "Tyler"

git config --global user.name "tharter@wisc.edu"

mailto:tharter@wisc.edu

HEAD, Branches, and Tags

Remembering commit numbers is a pain! Various kinds of labels
can serve as easy-to-remember aliases

HEAD

intern [branch]

master [branch]

experiment [branch]

v1.0 [tag] v2.0 [tag] v2.1 [tag]

HEAD: wherever you currently are (only one of these)
tag: label tied to a specific commit number
branch: label tied to end of chain (moves upon new commits)

HEAD, Branches, and Tags

What branch are we on?
git branch

Create new branch
git branch branchname

Switch branch
git checkout branchname

Practice Branching

Git equivalent of PythonTutor:

https://learngitbranching.js.org/?NODEMO

https://learngitbranching.js.org/?NODEMO

Merging without Conflicts

Switch branch
git merge frombranch

add whatever is there to the current branch
tip (or learn vim):
export EDITOR=nano

Merging with Conflicts
What happens when two people try to fix the same issue, in two
different (incompatible) ways?

time

my bike which
has a broken
seat is in the
garage

paper.txt

https://www.grammarly.com/blog/which-vs-that/

master branch

https://www.grammarly.com/blog/which-vs-that/

Merging with Conflicts
What happens when two people try to fix the same issue, in two
different (incompatible) ways?

time

my bike which
has a broken
seat is in the
garage

paper.txt

https://www.grammarly.com/blog/which-vs-that/

My bike that
has a broken
seat is in the
garage.

paper.txt

my bike, which
has a broken
seat, is in the
garage

paper.txt

that branch

master branch

https://www.grammarly.com/blog/which-vs-that/

Merging with Conflicts
What happens when two people try to fix the same issue, in two
different (incompatible) ways?

time

my bike which
has a broken
seat is in the
garage

paper.txt

https://www.grammarly.com/blog/which-vs-that/

My bike that
has a broken
seat is in the
garage.

paper.txt

my bike, which
has a broken
seat, is in the
garage

paper.txt

that branch

My bike, which
has a broken
seat, is in the
garage.

paper.txt master branch

needs manual conflict resolution because
only a human knows what is intended

https://www.grammarly.com/blog/which-vs-that/

Remotes
We will often want to work on our laptops, but also have our
repositories on GitHub (or similar)

Create GitHub account, go here: https://github.com/new

Pushing a branch to GitHub

git remote add github https://github.com/tylerharter/test.git

git push github master

remote
name

branch
name

https://github.com/new
https://github.com/tylerharter/test.git

Summary of Terms
commit: a snapshot of files at a point in time

HEAD: a convenient label for the current commit

tag: a label attached to a commit

branch: a label attached to a commit that re-attaches to new commits

merge: to combine changes on another branch into the current branch

conflict: differences that cannot automatically be merged

Challenges: https://learngitbranching.js.org/?NODEMO

https://learngitbranching.js.org/?NODEMO

