[320] Complexity + Big O

Tyler Caraza-Harter

Video Survey Results

78 people filled the survey

87% said they would use it to review(5 said they would skip lecture -- please don't!)

68% said "if I don't understand something during in-person lecture, I would prefer to review the video later than ask a question in person"

Plan: usually record videos for review for now (no guarantees if there are technical difficulties)

But! If people aren't asking many questions during lecture, I'll stop recording videos.

Review

The situation where git cannot auto-merge is called a _____

What is the missing step?

- I. nano file.txt
- 2. ????
- 3. git commit -m "I changed file.txt"
- 4. git push

What type does check_output return?

How can you use time.time() to measure an operation that is much faster than calling time.time()?

Complexity and Big O: Reading

Required: Think Python, Appendix B

http://www.greenteapress.com/thinkpython/html/thinkpython022.html (skip B.4)

Optional [math heavy]:

http://web.mit.edu/16.070/www/lecture/big_o.pdf

Things that affect performance (total time to run):

- ????

Things that affect performance (total time to run):

- speed of the computer (CPU, etc)
- speed of Python (quality+efficiency of interpretation)
- algorithm: strategy for solving the problem
- input size: how much data do we have?

Things that affect performance (total time to run):

- speed of the computer (CPU, etc)
- speed of Python (quality+efficiency of interpretation)
- algorithm: strategy for solving the problem
- input size: how much data do we have?

complexity analysis: how many steps must the algorithm perform, as a function of input size?

Which algorithm is better?

Do you prefer A or B?

Which algorithm is better?

Do you prefer A or B?

Which algorithm is better?

What is the asymptotic behavior of the function?

Things that affect performance (total time to run):

- speed of the computer (CPU, etc)
- speed of Python (quality+efficiency of interpretation)
- algorithm: strategy for solving the problem
- input size: how much data do we have?

complexity analysis: how many steps must the algorithm perform, as a function of input size?

Things that affect performance (total time to run):

- speed of the computer (CPU, etc)
- speed of Python (quality+efficiency of interpretation)
- algorithm: strategy for solving the problem
- input size: how much data do we have?

— what is this?

complexity analysis: how many steps must the algorithm perform, as a function of input size?

A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

```
input size is length of this list
     input nums = [2, 3, ...]
STEP odd count = 0
STEP odd sum = 0
STEP for num in input nums:
STEP
         if num % 2 == 1:
STEP
              odd count += 1
STEP
              odd sum += num
    odd avg = odd sum
STEP
     odd avg /= odd count
STEP
```


A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

One line can do a lot, so no reason to have lines and steps be equivalent

A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

Sometimes a single line is not a single step: found = X in L

A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

<u>???</u>

A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

is this a valid way to identify steps?

<u>???</u>

A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

A **step** is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

How many total steps will execute if len(input_nums) == 10?

A **step** is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

For N elements, there will be 2*N+3 steps

A **step** is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

input_nums = [2, 3, ...]
STEP odd_count = 0
STEP odd_sum = 0
STEP for num in input_nums:
STEP if num % 2 == 1:
STEP odd_count += 1
STEP odd_sum += num
STEP odd_avg = odd_sum
STEP odd_avg /= odd_count

How many total steps will execute if len(input_nums) == 10?

A **step** is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

input_nums = [2, 3, ...]

I.	STEP	odd_count = 0
+	STEP	$odd_sum = 0$
+	STEP	<pre>for num in input_nums:</pre>
+ 10	STEP	if num % 2 == 1:
+ 0 to 10	STEP	odd_count += 1
+ 0 to 10	STEP	odd_sum += num
+	STEP	odd_avg = odd_sum
+	STEP	odd_avg /= odd_count

For N elements, there will be between 2*N+5 and 4*N+5 steps

A **step** is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size)

```
input_nums = [2, 3, ...]
odd_count = 0
odd_sum = 0
for num in input_nums:
    if num % 2 == 1:
        odd_count += 1
        odd_sum += num
odd_avg = odd_sum / odd_count
```

Important: we might not identify steps the same, but our execution counts can at most differ by a <u>constant</u> factor!

can we broadly (but rigorously) categorize based on this?

Big O Notation ("O" is for "order of growth")

Goal: categorize functions (and algorithms) by how fast they grow

- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function is an upper bound

Big O Notation ("O" is for "order of growth")

Goal: categorize functions (and algorithms) by how fast they grow

- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function is an upper bound

Big O Notation ("O" is for "order of growth")

Goal: categorize functions (and algorithms) by how fast they grow

- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function is an upper bound

If $f(N) \le C * g(N)$ for large N values and some fixed <u>constant</u> C

Then $f(N) \in O(g(N))$

If $f(N) \le C * g(N)$ for large N values and some fixed <u>constant</u> C

Then $f(N) \in O(g(N))$

If $f(N) \le C * g(N)$ for large N values and some fixed <u>constant</u> C

Then $f(N) \in O(g(N))$

which ones are true?

 $2N \in O(N)$ $100N \in O(N^2)$ $N^2 \in O(100000N)$

If $f(N) \le C * g(N)$ for large N values and some fixed <u>constant</u> C

Then $f(N) \in O(g(N))$

If $f(N) \le C * g(N)$ for large N values and some fixed <u>constant</u> C

Then $f(N) \in O(g(N))$

which ones are true? $N^2 \in O(N^2+N+1)$

 $N^2+N+1 \in O(N^2)$

 $N^5 \in O(N^4 + N^3 + N^2 + N)$

If $f(N) \le C * g(N)$ for large N values and some fixed <u>constant</u> C

Then $f(N) \in O(g(N))$

If $f(N) \le C * g(N)$ for large N values and some fixed <u>constant</u> C

Then $f(N) \in O(g(N))$

If $f(N) \le C * g(N)$ for large N values and some fixed <u>constant</u> C

Then $f(N) \in O(g(N))$

We'll let **f(N)** be the number of steps that some **Algorithm A** needs to perform for input size **N**.

When we say Algorithm $A \in O(g(N))$, we mean that $f(N) \in O(g(N))$

If $f(N) \le C * g(N)$ for large N values and some fixed <u>constant</u> C

Then $f(N) \in O(g(N))$

For N elements, there will be 2*N+3 steps

If $f(N) \le C * g(N)$ for large N values and some fixed <u>constant</u> C

Then $f(N) \in O(g(N))$

```
STEP odd_count = 0
STEP odd_sum = 0
STEP for num in input_nums:
STEP if num % 2 == 1:
STEP odd_count += 1
STEP odd_sum += num
STEP odd_avg = odd_sum
STEP odd_avg /= odd_count
```


For N elements, there will be between 2*N+5 and 4*N+5 steps

Coding/Plotting Example

```
def is prime(N):
    prime = True
    for factor in range(2, N):
        steps += 1
        if N % factor == 0:
            prime = False
    return prime
                                what is the complexity of each function
def find primes(cap):
    primes = []
    for i in range(cap+1):
         if is prime(i):
             primes.append(i)
    return primes
```

Coding/Plotting Example

```
def is_prime(N):
    prime = True
    for factor in range(2, N):
        steps += 1
        if N % factor == 0:
            prime = False
    return prime
```


Coding/Plotting Example

Binary Search: Coding Example

Binary Search

Binary Search: Coding Example

Sorting: Coding Examples

Analysis of Algorithms: Key Ideas

complexity: relationship between input size and steps executed

step: an operation of bounded cost (doesn't scale with input size)

asymptotic analysis: we only care about very large N values for complexity (for example, assume a big list)

worst-case: we'll usually assume the worst arrangement of data because it's harder to do an average case analysis (for example, assume search target at the end of a list)

big O: if f(N) ≤ C * g(N) for large N values and some fixed constant C, then f(N) ∈ O(g(N))