
[320] Complexity + Big O
Tyler Caraza-Harter

Video Survey Results

78 people filled the survey

87% said they would use it to review
(5 said they would skip lecture -- please don't!)

68% said "if I don't understand something during in-person lecture, I
would prefer to review the video later than ask a question in person"

Plan: usually record videos for review for now
(no guarantees if there are technical difficulties)

But! If people aren't asking many questions during lecture, I'll stop
recording videos.

Review
The situation where git cannot auto-merge is called a ____________

What is the missing step?

1. nano file.txt

2. ????

3. git commit -m "I changed file.txt"

4. git push

What type does check_output return?

How can you use time.time() to measure an operation that is much faster
than calling time.time()?

Complexity and Big O: Reading

Required: Think Python, Appendix B

http://www.greenteapress.com/thinkpython/html/thinkpython022.html (skip B.4)

Optional [math heavy]:
http://web.mit.edu/16.070/www/lecture/big_o.pdf

http://www.greenteapress.com/thinkpython/html/thinkpython022.html
http://web.mit.edu/16.070/www/lecture/big_o.pdf

Complexity

Performance vs. Complexity

Things that affect performance (total time to run):

- ????

Performance vs. Complexity

Things that affect performance (total time to run):

- speed of the computer (CPU, etc)

- speed of Python (quality+efficiency of interpretation)

- algorithm: strategy for solving the problem

- input size: how much data do we have?

Things that affect performance (total time to run):

- speed of the computer (CPU, etc)

- speed of Python (quality+efficiency of interpretation)

- algorithm: strategy for solving the problem

- input size: how much data do we have?

Performance vs. Complexity

complexity analysis: how many steps must the
algorithm perform, as a function of input size?

algorithm A

algorithm B

Do you prefer A or B?

Which algorithm is better?

fewer steps
is faster

Which algorithm is better?

algorithm A

algorithm B

Do you prefer A or B?

fewer steps
is faster

Which algorithm is better?

algorithm A

algorithm B

crossover point

fewer steps
is faster

Which algorithm is better?

algorithm A

algorithm B

What is the asymptotic behavior of the function?

crossover point

complexity analysis only
cares about "big" inputs

you might still reasonably
care about this portion!

fewer steps
is faster

Things that affect performance (total time to run):

- speed of the computer (CPU, etc)

- speed of Python (quality+efficiency of interpretation)

- algorithm: strategy for solving the problem

- input size: how much data do we have?

Performance vs. Complexity

complexity analysis: how many steps must the
algorithm perform, as a function of input size?

Things that affect performance (total time to run):

- speed of the computer (CPU, etc)

- speed of Python (quality+efficiency of interpretation)

- algorithm: strategy for solving the problem

- input size: how much data do we have?

Performance vs. Complexity

complexity analysis: how many steps must the
algorithm perform, as a function of input size?

what is this?

What is a "step"?

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

What is a step?

STEP
STEP
STEP
STEP

STEP

STEP

STEP

STEP

input size is length of this list

What is a step?

STEP

STEP
STEP

STEP

STEP

also a valid
breakdown
into steps

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

What is a step?

STEP

STEP
STEP

STEP

STEP

One line can do a lot, so no reason to
have lines and steps be equivalent

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

What is a step?

STEP

STEP
STEP

STEP

STEP

Sometimes a single line is not a single step:
found = X in L

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

What is a step?

STEP

STEP

STEP

STEP

???

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

What is a step?

STEP

STEP

STEP

STEP

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

STEP

STEP

STEP

???

is this a valid way to identify steps?

What is a step?

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

STEP

STEP

STEP

not a "step", because
exec time depends

on input size

What is a step?

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

Counting Executed Steps

Counting Executed Steps

STEP

STEP

STEP

STEP

How many total steps will execute if
len(input_nums) == 10?

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

Counting Executed Steps

STEP

STEP

STEP

STEP

For N elements, there will be 2*N+3 steps

1

+ 11

+ 10

+ 1

= 23 steps

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

STEP
STEP
STEP
STEP

STEP

STEP

STEP

STEP

Counting Executed Steps

How many total steps will execute if
len(input_nums) == 10?

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

STEP
STEP
STEP
STEP

STEP

STEP

STEP

STEP

Counting Executed Steps

1
+ 1

+ 11
+ 10

+ 0 to 10

+ 0 to 10

+ 1

+ 1

For N elements, there will be between
2*N+5 and 4*N+5 steps

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

Important: we might not identify steps the same, but our
execution counts can at most differ by a constant factor!

can we broadly
(but rigorously)

categorize based on this?

Counting Executed Steps

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

O
a really big "O"

Big O Notation ("O" is for "order of growth")
Goal: categorize functions (and algorithms) by how fast they grow
- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function is an upper bound

f(N) == 2N2 + 100
is an O(N2) function

Big O Notation ("O" is for "order of growth")

f(N) == 2N2 + 100
is an O(N2) function

not because N2

is an upper bound

Goal: categorize functions (and algorithms) by how fast they grow
- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function is an upper bound

Big O Notation ("O" is for "order of growth")

crossover
point

f(N) == 2N2 + 100
is an O(N2) function

not because N2

is an upper bound

because some multiple is an
upper bound after some point

Goal: categorize functions (and algorithms) by how fast they grow
- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function is an upper bound

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

O(1)

O(N2)
O(N3)

...
O(N)

O(CN)Sets

f(N)=2*N2
Note: if f(N) is in O(N2), then of course
f(N) is in O(N3) too. When asked, give
the most informative answer.

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

100N ∈ O(N2)

2N ∈ O(N)

N2 ∈ O(1000000N)

which ones
are true?

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

100N ∈ O(N2)

2N ∈ O(N)

N2 ∈ O(1000000N)

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

N2+N+1 ∈ O(N2)

N2 ∈ O(N2+N+1)

N5 ∈ O(N4 + N3 + N2 + N)

which ones
are true?

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

N2+N+1 ∈ O(N2)

N2 ∈ O(N2+N+1)

N5 ∈ O(N4 + N3 + N2 + N)

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

N2+N+1 ∈ O(N2)

N2 ∈ O(N2+N+1)

N5 ∈ O(N4 + N3 + N2 + N)

simplify when possible

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

We'll let f(N) be the number of steps that some
Algorithm A needs to perform for input size N.

When we say Algorithm A ∈ O(g(N)),
we mean that f(N) ∈ O(g(N))

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

STEP

STEP

STEP

STEP

For N elements, there will be 2*N+3 steps

2*N+3 ≤ 3 * N
[for big N values]

therefore

this code is O(N)

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

4*N+5 ≤ 5 * N
[for big N values]

therefore

this code is O(N)

STEP
STEP

STEP
STEP

STEP

STEP

STEP

STEP

For N elements, there will be between 2*N+5 and 4*N+5 steps

Examples

Coding/Plotting Example

what is the complexity of each function

Coding/Plotting Example

y=N

actual steps

Coding/Plotting Example

y=N

actual steps
for simplicity, we'll usually do a

worst-case analysis, under
which this would still be O(N)

what if we add a break here?

implications for
X in L?

Binary Search: Coding Example

O(1)O(N)O(N log N) O(log N)O(N2)

find_primes

Binary Search

is_prime

binary_search

Binary Search: Coding Example

black: actual steps

Sorting: Coding Examples

O(1)O(N)O(N log N) O(log N)O(N2)

is_prime
find_primes

binary_search

merge

merg
e_sort

sele
ctio

n_sort

Analysis of Algorithms: Key Ideas
complexity: relationship between input size and steps executed

step: an operation of bounded cost (doesn't scale with input size)
asymptotic analysis: we only care about very large N values for complexity (for
example, assume a big list)
worst-case: we'll usually assume the worst arrangement of data because it's
harder to do an average case analysis (for example, assume search target at the
end of a list)

big O: if f(N) ≤ C * g(N) for large N values and some fixed constant C,
big O: then f(N) ∈ O(g(N))

