Lecture 5 Worksheet: Complexity Analysis

A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size).

We classify algorithm complexity by classifying the order of growth of a function f(N), where f gives the number of
steps the algorithm must perform for a given input size.

Big O definition: if f(N) < C * g(N) for large N values and some fixed constant C, then f(N) € O(g(N))

Let f(N) = 2N2 + N + 12

150 (30) *N
If we want to show f(N) € O(N3), what is a 125 (1) * N**3
good lower bound on N? Let's have C=1.
100 (4) * N**2
If we want to show f(N) € O(N2), do we 9
: ki 75
pick |,2, or 4 for the C? After picking C, % 2xN*¥%¥2 + N + 12

should we choose for N's lower bound?
/_,.(2) * ¥k

What is more informative to show?

f(N) € O(N3) or f(N) € O(N2y (1) * N**2

Somebody claims f(N) € O(N), offering 1 2 3 4 5
C=30 and N>0. Suggest an N value to N (data size)
counter their claim.

Each of the following list operations are either O(1) or O(N), where N is len(L). Circle those you think are O(N).

L.insert (0, x) L.pop(0) x = L[O0] b4 max (L) x = len(L)

L.append(x) L.pop(-1) L2.extend (L) sum(L) found = X in L

b
I

Let f(N) be the number of times line A executes, with

def search(L, target): , ,
N=len(L). What is f(N) in each case?

for x in L:

if x == target: Worst Case (target is at end of list): f(N) =
return True / Best Case (target is at beginning of list): f(N) =
return False assume this is asked  Average Case (target in middle of list):  f(N) =

unless otherwise stated

def selection sort(L):
for i in range(len(L)):

idx—mir_l =1 . if this runs f(N) times, where N=len(L),
for j in range(i, len(L)):
if L[Jj] < L[idx min]: thenf(N) =

idx min = j
L[idx min], L[i] = L[i], L[idx min]

nums = [2, 4, 3, 1]
selection_ sort(nums) The complexity of selection sort is

print (nums) O( )



<::> # assume L is already sorted, N=len(L)
def binary search(L, target): how many times does this step run
left_idx = 0 # inclusive whenN=1?2N=2?N=4?N = 8?
right idx = len(L) # exclusive
while right idx - left idx > 1:
mid idx = (right_idx + left_idx) // 2
mid = L[mid idx]
if target >= mid:
left idx = mid idx The complexity of binary search is
else: o)
right_idx = mid_idx

If f(N) is the number of times this step
runs, then f(N) =

return right idx > left idx and L[left idx] == target
def merge(Ll, L2): def merge sort(L):
rv = [] if len(L) < 2:
idxl = 0 return L
idx2 =0 mid = len(L) // 2
left = L[:mid]
while True: right = L[mid:]
donel = idxl == len(Ll) left = merge sort(left)
done2 = idx2 == len(L2) right = merge sort(right)
return merge(left, right)
if donel and done2:
return rv merge sort([4, 1, 2, 3])

choosel = False

if done2:
choosel = True A
elif not donel and L1l[idx1l] < L2[idx2]: }’hﬂs‘\
choosel = True
2,3/ 7|8 11456
if choosel: A A
rv.append(L1[idx1]) MS MS
idxl += 1 o\
else: 78|23/ 4/ 5||1|6
rv.append(L2[idx2]) A A A A
idx2 += 1 MS MS MS MS
ARARAXRANX
return rv 871( 23|54 6|1
merge([1l, 31, [2, 4]) wilretun ) If we double the list size, there willbe

merge (L1, L2) implements an O(N) algorithm. But how more level(s). Level count grows

. . O(___ ). WorkperlevelisO(___ ).
can we measure the size of the input? N = o
merge_sort complexity: O( )
nums = [...] If we increase the size of nums from 20 items to 100 items, the code
will probably take times longer to run.

firstl00sum = 0

If we increase the size of nums from 100 to 000, will the code take

for x in nums[:100]: longer? Yes / No

first1l00sum += x

int(£first100
print(firs sum) The complexity of the code is O( ), with N=len(nums).



