
A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size).

We classify algorithm complexity by classifying the order of growth of a function f(N), where f gives the number of
steps the algorithm must perform for a given input size.

Big O definition: if f(N) ≤ C * g(N) for large N values and some fixed constant C, then f(N) ∈ O(g(N))

Each of the following list operations are either O(1) or O(N), where N is len(L). Circle those you think are O(N).

L.pop(-1)

L.pop(0)

L.append(x)

L.insert(0, x)

x = sum(L)

x = max(L)

L2.extend(L)

x = L[0]

found = X in L

x = len(L)

1

2

Let f(N) = 2N2 + N + 12

If we want to show f(N) ∈ O(N3), what is a
good lower bound on N? Let's have C=1.

If we want to show f(N) ∈ O(N2), do we
pick 1, 2, or 4 for the C? After picking C,
should we choose for N's lower bound?

What is more informative to show?
f(N) ∈ O(N3) or f(N) ∈ O(N2)?

Somebody claims f(N) ∈ O(N), offering
C=30 and N>0. Suggest an N value to
counter their claim.

def search(L, target):
 for x in L:
 if x == target: #line A
 return True
 return False

Let f(N) be the number of times line A executes, with
N=len(L). What is f(N) in each case?

Worst Case (target is at end of list):
Best Case (target is at beginning of list):
Average Case (target in middle of list):

f(N) = _________.
f(N) = _________.
f(N) = _________assume this is asked

unless otherwise stated

3

4
def selection_sort(L):
 for i in range(len(L)):
 idx_min = i
 for j in range(i, len(L)):
 if L[j] < L[idx_min]:
 idx_min = j
 L[idx_min], L[i] = L[i], L[idx_min] # swap values at i and idx_min

nums = [2, 4, 3, 1]
selection_sort(nums)
print(nums)

if this runs f(N) times, where N=len(L),

then f(N) = _____________________

The complexity of selection sort is

O(____________)

1

Lecture 5 Worksheet: Complexity Analysis

2

5 # assume L is already sorted, N=len(L)
def binary_search(L, target):
 left_idx = 0 # inclusive
 right_idx = len(L) # exclusive
 while right_idx - left_idx > 1:
 mid_idx = (right_idx + left_idx) // 2
 mid = L[mid_idx]
 if target >= mid:
 left_idx = mid_idx
 else:
 right_idx = mid_idx

 return right_idx > left_idx and L[left_idx] == target

how many times does this step run
when N = 1? N = 2? N = 4? N = 8?

If f(N) is the number of times this step
runs, then f(N) = _____________

The complexity of binary search is
O(____________)

def merge(L1, L2):
 rv = []
 idx1 = 0
 idx2 = 0

 while True:
 done1 = idx1 == len(L1)
 done2 = idx2 == len(L2)

 if done1 and done2:
 return rv

 choose1 = False
 if done2:
 choose1 = True
 elif not done1 and L1[idx1] < L2[idx2]:
 choose1 = True

 if choose1:
 rv.append(L1[idx1])
 idx1 += 1
 else:
 rv.append(L2[idx2])
 idx2 += 1

 return rv

def merge_sort(L):
 if len(L) < 2:
 return L
 mid = len(L) // 2
 left = L[:mid]
 right = L[mid:]
 left = merge_sort(left)
 right = merge_sort(right)
 return merge(left, right)

merge_sort([4, 1, 2, 3])

6

merge([1, 3], [2, 4]) will return ________________.
merge(L1, L2) implements an O(N) algorithm. But how
can we measure the size of the input? N = _______________.

7

8 7 2 3 5 4 6 1

MS

7 8 2 3 4 5 1 6

2 3 7 8 1 4 5 6

1 2 3 4 5 6 7 8

MS MS

MSMSMSMS

If we double the list size, there will be ___
more level(s). Level count grows
O(______). Work per level is O(______).
merge_sort complexity: O(_________)

nums = [...]

first100sum = 0

for x in nums[:100]:
 first100sum += x
print(first100sum)

If we increase the size of nums from 20 items to 100 items, the code
will probably take _______ times longer to run.

If we increase the size of nums from 100 to 1000, will the code take
longer? Yes / No

The complexity of the code is O(_____), with N=len(nums).

