
A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size).

We classify algorithm complexity by classifying the order of growth of a function f(N), where f gives the number of 
steps the algorithm must perform for a given input size.

Big O definition: if f(N) ≤ C * g(N) for large N values and some fixed constant C, then f(N) ∈ O(g(N))

Each of the following list operations are either O(1) or O(N), where N is len(L).  Circle those you think are O(N).

L.pop(-1)

L.pop(0)

L.append(x)

L.insert(0, x)

x = sum(L)

x = max(L)

L2.extend(L)

x = L[0]

found = X in L

x = len(L)

1

2

Let f(N) = 2N2 + N + 12 

If we want to show f(N) ∈ O(N3), what is a 
good lower bound on N?  Let's have C=1.

If we want to show f(N) ∈ O(N2), do we 
pick 1, 2, or 4 for the C?  After picking C, 
should we choose for N's lower bound? 

What is more informative to show?
f(N) ∈ O(N3) or f(N) ∈ O(N2)?

Somebody claims f(N) ∈ O(N), offering 
C=30 and N>0.  Suggest an N value to 
counter their claim.

def search(L, target):
   for x in L:
      if x == target: #line A
         return True
   return False

Let f(N) be the number of times line A executes, with 
N=len(L).  What is f(N) in each case?

Worst Case (target is at end of list):
Best Case (target is at beginning of list):
Average Case (target in middle of list):

f(N) = _________.
f(N) = _________.
f(N) = _________assume this is asked 

unless otherwise stated
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def selection_sort(L):
    for i in range(len(L)):
        idx_min = i
        for j in range(i, len(L)):
            if L[j] < L[idx_min]:
                idx_min = j
        L[idx_min], L[i] = L[i], L[idx_min] # swap values at i and idx_min

nums = [2, 4, 3, 1]
selection_sort(nums)
print(nums)

if this runs f(N) times, where N=len(L),

then f(N) = _____________________

The complexity of selection sort is

O(____________)
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5 # assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx

    return right_idx > left_idx and L[left_idx] == target

how many times does this step run 
when N = 1? N = 2? N = 4? N = 8? 

If f(N) is the number of times this step 
runs, then f(N) = _____________

The complexity of binary search is
O(____________)

def merge(L1, L2):
  rv = []
  idx1 = 0
  idx2 = 0

  while True:
    done1 = idx1 == len(L1)
    done2 = idx2 == len(L2)

    if done1 and done2:
      return rv

    choose1 = False
    if done2:
      choose1 = True
    elif not done1 and L1[idx1] < L2[idx2]:
      choose1 = True

    if choose1:
      rv.append(L1[idx1])
      idx1 += 1
    else:
      rv.append(L2[idx2])
      idx2 += 1

  return rv

def merge_sort(L):
  if len(L) < 2:
    return L
  mid = len(L) // 2
  left = L[:mid]
  right = L[mid:]
  left = merge_sort(left)
  right = merge_sort(right)
  return merge(left, right)

merge_sort([4, 1, 2, 3])
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merge([1, 3], [2, 4]) will return ________________.
merge(L1, L2) implements an O(N) algorithm.  But how 
can we measure the size of the input?  N = _______________.
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If we double the list size, there will be ___ 
more level(s).  Level count grows 
O(______).  Work per level is O(______). 
merge_sort complexity: O(_________)

nums = [...]

first100sum = 0

for x in nums[:100]:
    first100sum += x
print(first100sum)

If we increase the size of nums from 20 items to 100 items, the code 
will probably take _______ times longer to run.

If we increase the size of nums from 100 to 1000, will the code take 
longer?   Yes / No

The complexity of the code is O(_____), with N=len(nums).


