
[320] Web 2: Advanced Functions for Web
Frameworks and Tracing

Tyler Caraza-Harter

Review Web
If a process is listening for external traffic on port N, but clients cannot communicate, it's
possible that a ___________ is blocking port N.

A _____ page corresponds to the contents of a file.

Data may be uploaded with an HTTP _______ request.

Differents servers on the same computer generally listen on different ______s.

Is it dangerous to run python3 -m http.server --bind=127.0.0.1 in a directory full of
private data?

A domain-name system (DNS) is like a dictionary, where you give it a domain name as a
key, and you get back a ___________ as a value.

Why might a web browser need to fetch multiple resouces to load a page?

Page Load, the Big Picture

computer 2
(Virtual Machine)

IP address: 18.216.110.65

computer 1
(laptop)

index.html, please [GET]

A.png, please [GET]
B.js please [GET]Hello

JavaScript (B.js) data.json please [GET]

It's hard to scrape this kind of table: requests.get("index.html") wouldn't work...

here's some data [POST]

Function References and Decorators

What does "@____" mean???

https://github.com/tylerharter/cs320/tree/master/s20/p3

decorator

@f
def g():
 ...

f is a decorator, meaning:
it is a function that takes a reference to another
function and returns a reference to a third function

https://github.com/tylerharter/cs320/tree/master/s20/p3

Combine simple functions to achieve complex goals

double
[function]

add_one
[function]

5 10 11
print

[function]

Composition:

Calls:

print(add_one(double(5)))

Definitions:

def double(x):
 return x * 2

def add_one(x):
 return x + 1

Combine simple functions to achieve complex goals

double
[function]

print
[function]

Passing Function Reference:

Calls:

print(apply_each([1,2,3], double))

Definitions:

def double(x):
 return x * 2

def apply_each(nums, fn):
 return [fn(x) for x in nums]

[1,2,3]
apply_each
[function] [2,4,6]

Combine simple functions to achieve complex goals

double
[function]

print
[function]

Passing Function Reference:

Calls:

print(apply_each([1,2,3], double))

Definitions:

def double(x):
 return x * 2
double = lambda x: x * 2 # same as def double(x)...

def apply_each(nums, fn):
 return [fn(x) for x in nums]

[1,2,3]
apply_each
[function] [2,4,6]

Combine simple functions to achieve complex goals

double
[function]

print
[function]

Passing Function Reference:

Calls:

print(apply_each([1,2,3], double))

Definitions:

def double(x):
 return x * 2
double = lambda x: x * 2

def apply_each(nums, fn):
 return [fn(x) for x in nums]

[1,2,3]
apply_each
[function] [2,4,6]

parameter

return valuereference to
the function

Combine simple functions to achieve complex goals

anonymous
[function]

print
[function]

Passing Function Reference:

Calls:

print(apply_each([1,2,3], double))

Definitions:

def double(x):
 return x * 2
double = lambda x: x * 2

def apply_each(nums, fn):
 return [fn(x) for x in nums]

[1,2,3]
apply_each
[function] [2,4,6]

Combine simple functions to achieve complex goals

anonymous
[function]

print
[function]

Passing Function Reference:

Calls:

print(apply_each([1,2,3], lambda x: x * 2))

Definitions:

def double(x):
 return x * 2
double = lambda x: x * 2

def apply_each(nums, fn):
 return [fn(x) for x in nums]

[1,2,3]
apply_each
[function] [2,4,6]

Combine simple functions to achieve complex goals

Return Function Reference:

Calls:

double = mult_fn(2)
triple = mult_fn(3)
y = double(10)

Definitions:

def mult_fn(num):
 def multiplier(x):
 return x * num
 return multiplier

mult_fn
[function]2

double
[function] , 10

double
[function] 20

Combine simple functions to achieve complex goals

Return Function Reference:

Calls:

double = mult_fn(2)
triple = mult_fn(3)
y = triple(10)

Definitions:

def mult_fn(num):
 def multiplier(x):
 return x * num
 return multiplier

mult_fn
[function]3

triple
[function] , 10

triple
[function] 30

PythonTutor

What does "@____" mean???

https://github.com/tylerharter/cs320/tree/master/s20/p3

decorator

@f
def g():
 ...

f is a decorator, meaning:
it is a function that takes a reference to another
function and returns a reference to a third function

https://github.com/tylerharter/cs320/tree/master/s20/p3

Decorator: Mechanics

decorate
[function]

function_B
[function]

function_A
[function]

def function_A():
 print("A")

def decorate(fn):
 print("decorating!")
 return function_A

@decorate
def function_B():
 print("B")

function_B() # prints "A"!

def function_A():
 print("A")

def decorate(fn):
 print("decorating!")
 return function_A

def function_B():
 print("B")
function_B = decorate(function_B)

function_B() # prints "A"!

PythonTutor

Decorator Pattern 1: wrapper

decorate
[function]

f_plus
[function]

f
[function]

def f_plus():
 # do some extra stuff
 f()

Decorator Pattern 1: wrapper

decorate
[function]

f_plus
[function]

f
[function]

def f_plus():
 # do some extra stuff
 f()

counts = {}

def count_me(fn):
 counts[fn.__name__] = 0
 def wrapper():
 counts[fn.__name__] += 1
 fn()
 return wrapper

@count_me
def f():
 print("f")

@count_me
def g():
 print("g") PythonTutor

example: track how often each function is called

Decorator Pattern 2: register

decorate
[function]

f
[function]

f
[function]

same

def decorate(fn):
 # add fn to a list or something
 return fn

Decorator Pattern 2: register

decorate
[function]

f
[function]

f
[function]

PythonTutor

same

def decorate(fn):
 # add fn to a list or something
 return fn

def abs(x):
 if x < 0:
 return -x
 elif x > 0:
 return x

tests = []
def test(fn):
 tests.append(fn)
 return fn

@test
def test_neg():
 assert abs(-1) == 1
 assert abs(-3) == 3

@test
def test_pos():
 assert abs(1) == 1
 assert abs(3) == 3

@test
def test_zero():
 assert abs(0) == 0

passing = 0
failing = 0
for test_fn in tests:
 try:
 test_fn()
 passing += 1
 except Exception:
 failing += 1
print("PASS", passing, "FAIL", failing)

Decorator Pattern 2: register

decorate
[function]

f
[function]

f
[function]

PythonTutor

same

def decorate(fn):
 # add fn to a list or something
 return fn

routes = {}

def route(url):
 def wrap(fn):
 routes[url] = fn
 return fn
 return wrap

@route("/")
def home():
 print("home")

@route("/donate.html")
def page2():
 print("donate")

for resource in ["/", "/donate.html", "missing.html"]:
 fn = routes.get(resource)
 if fn == None:
 print("404!")
 continue
 fn()

Register home function to handle "/" requests

https://github.com/tylerharter/cs320/tree/master/s20/p3

decorator

https://github.com/tylerharter/cs320/tree/master/s20/p3

Variable Length Arguments

*args

s = "Dear {}, you are invited to {}."

print(s.format(????))

how many arguments should go here?

*args

s = "Dear {}, you are invited to {}."

print(s.format("Student", "hackathon"))

*args

s = "Dear {}, you are invited to {}."

print(format(s, "Student", "hackathon"))

def format(template, *args):
 ...

*args

s = "Dear {}, you are invited to {}."

print(format(s, "Student", "hackathon"))

def format(template, *args):
 ...

*args

s = "Dear {}, you are invited to {}."

print(format(s, "Student", "hackathon"))

def format(template, *args):
 parts = template.split("{}")
 assert(len(parts) == len(args) + 1)
 result = []
 for i in range(len(args)):
 result.append(parts[i])
 result.append(args[i])
 result.append(parts[-1])
 return "".join(result)

Star (*) can be used on both parameter and argument sides

print(1, 2, 3)

print(*[1, 2, 3])

Double star (**) can be for keyword arguments

def f(*args, **kwargs):
 print("ARGS", args)
 print("KWARGS", kwargs)

f(1, 2, x=3, y=4, z=5)

ARGS (1, 2)
KWARGS {'x': 3, 'y': 4, 'z': 5}

output

Tracing

Tracing
What if we want a record/log/trace of every function invocation, and the arguments?

Use decorators to wrap the function of interest.

Use *args and **kwargs to capture any inputs.

def trace(fn):
 def wrap(*args, **kwargs):
 print("CALL {}(*{}, **{})".format(fn.__name__, args, kwargs))
 return fn(*args, **kwargs)
 return wrap

@trace
def add(x, y):
 return x+y

@trace
def mult(x, y):
 return x*y

print(add(1, 2))
print(add(x=1, y=2))
print(mult(2, y=3))

Query Strings and Post Bodies
[code examples]

