[320] Optimization and Gradient Descent

Tyler Caraza-Harter

Optimization Problems

minimize or maximize something

find the x value that minimizes the y, when $y=f(x)$
find the fit line coeficients (slope and intercept) that minimize the average squared differences between the data and the line
find the weights on edges between neurons to minimize the mistakes made by the neural network

Techniques

find the x value that minimizes the y, when $y=f(x)$

Calculus: find derivative of continuous function f, set to zero, evaluate \times solutions

Compute: loop over lots of \times values $(-5,-4.9,-4.8, \ldots, 4.8,4.9,5)$

Compute: gradient descent (keep tweaking \times based on gradient, searching for best)

Gradient Descent

find the \times value that minimizes the y, when $y=f(x)$

imagine you're in the mountains...

Gradient Descent

find the x value that minimizes the y, when $y=f(x)$

...trying to find the lowest point...

Gradient Descent

find the \times value that minimizes the y, when $y=f(x)$

X

...in a heavy fog

Gradient Descent

find the \times value that minimizes the y, when $y=f(x)$

X

Move to bigger or smaller x ? Smaller because the gradient is positive!

Gradient Descent

find the \times value that minimizes the y, when $y=f(x)$

X

Move to bigger or smaller x ? Smaller because the gradient is positive!

Gradient Descent

find the \times value that minimizes the y, when $y=f(x)$

X

Move to bigger or smaller x ? Smaller because the gradient is positive!

Gradient Descent

find the \times value that minimizes the y, when $y=f(x)$

X

Hiking Analogy Breaks Down: you "Jump" witout crossing area between

Gradient Descent

find the \times value that minimizes the y, when $y=f(x)$

X

Problem I: jumpying past the optimimum without realizing it (how far should we jump each time?)

Gradient Descent

find the \times value that minimizes the y, when $y=f(x)$

Problem 2: lots of local minima (for certain problems)

Gradient Descent

find the x value(s) that minimize the y, when $y=f\left(x_{1}, x_{2}\right)$

Hiking Analogy Breaks Down: there may be MANY dimensions

Gradient Descent

find the x value that minimizes the y, when $y=f\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{N}\right)$

Hiking Analogy Breaks Down: there may be MANY dimensions

Least Squares, with Gradient Descent

find the x value that minimizes the y, when $y=f\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{N}\right)$

2

> find the fit line coeficients (slope and intercept) that minimize the average squared differences between the data and the line

$$
\begin{aligned}
& y=f(x) \quad \text { where } f(x)=\text { slope* } x+\text { intercept } \\
& \text { error }=\text { mean_squared_error(slope, intercept) }
\end{aligned}
$$

use gradient descent to find best slope, intercept!

Least Squares, with Gradient Descent

find the x value that minimizes the y, when $y=f\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{N}\right)$

2
find the fit line coeficients (slope and intercept) that minimize the average squared differences between the data and the line
$y=f(x) \quad$ where $f(x)=$ slope $^{*} x+$ intercept
error = mean_squared_error(slope, intercept)
use gradient descent to find best slope, intercept!
mean_squared_error is a convex function: https://en.wikipedia.org/wiki/Convex function

