
[320] Implementing Various
Graph Structures

Tyler Caraza-Harter

Review
def contains(node, target):
 if node == None:
 return False

 if node.val == target:
 return True

 return (contains(node.left, target) or
 contains(node.right, target))

How many nodes will contains(root, "Z") check?
1. one
2. six

What will contains(root, "C") check first?
1. node X
2. node C

How many nodes will contains(root, "C") check?
1. five
2. six

Hierarchy of Graphs
Graph: nodes+edges
Directed Graph: graph with
• one-way edges

DAG: directed graph that
• does not have cycles

Tree: DAG that
• has exactly one root
• non-roots have exactly one parent

Binary Tree: tree such that
• nodes have at most 2 children

Linked List: tree such that
• nodes have at most 1 child

BST: tree such that
• vals in left subtree < parent val
• parent val < vals in right subtree

G

DG

DAG

T

BT

LL

BST

today

Hierarchy of Graphs
Graph: nodes+edges
Directed Graph: graph with
• one-way edges

DAG: directed graph that
• does not have cycles

Tree: DAG that
• has exactly one root
• non-roots have exactly one parent

Binary Tree: tree such that
• nodes have at most 2 children

Linked List: tree such that
• nodes have at most 1 child

BST: tree such that
• vals in left subtree < parent val
• parent val < vals in right subtree

G

DG

DAG

T

BT

LL

BST

all these are "weakly connected"

Weakly Connected
Graph: nodes+edges
Directed Graph: graph with
• one-way edges

DAG: directed graph that
• does not have cycles

Tree: DAG that
• has exactly one root
• non-roots have exactly one parent

Binary Tree: tree such that
• nodes have at most 2 children

Linked List: tree such that
• nodes have at most 1 child

BST: tree such that
• vals in left subtree < parent val
• parent val < vals in right subtree

all these are "weakly connected"

A

B C

D

Not technically connected
because no D → A path

it is weakly connected
because there is a path

between every pair if we
ignore edge direction

A

B C

D

Node Attributes
what kind of graph is each class for?

class Node:
 def __init__(self, val):
 self.left = None
 self.right = None
 ...

class Node:
 def __init__(self, val):
 self.next = None
 ...

class Node:
 def __init__(self, val):
 self.children = []
 ...

A

B

C

Graph: nodes+edges
Directed Graph: graph with
• one-way edges

DAG: directed graph that
• does not have cycles

Tree: DAG that
• has exactly one root
• non-roots have exactly one parent

Binary Tree: tree such that
• nodes have at most 2 children

Linked List: tree such that
• nodes have at most 1 child

BST: tree such that
• vals in left subtree < parent val
• parent val < vals in right subtree

Implementing Graphs: Classes and Attributes
Nodes:
• usually have class for this

Graph:
• often have a class for this to handle various cases:

- graphs with zero nodes
- graphs with multiple roots
- enforce constraints (if not directed, edges come in pairs)

class Graph: # undirected
 def __init__(self):
 self.nodes = {}

 def add_node(self, name, val):
 self.nodes[name] = Node(name, val)

 def add_edge(self, name1, name2):
 node1 = self.nodes[name1]
 node2 = self.nodes[name2]
 node1.children.append(node2)
 node2.children.append(node1)

Edges:
• often just an attribute in a Node
• if there is edge metadata, might be

a separate class just for this

