[320] Web 5: A/B Testing

Tyler Caraza-Harter

Source for Examples/Lessons

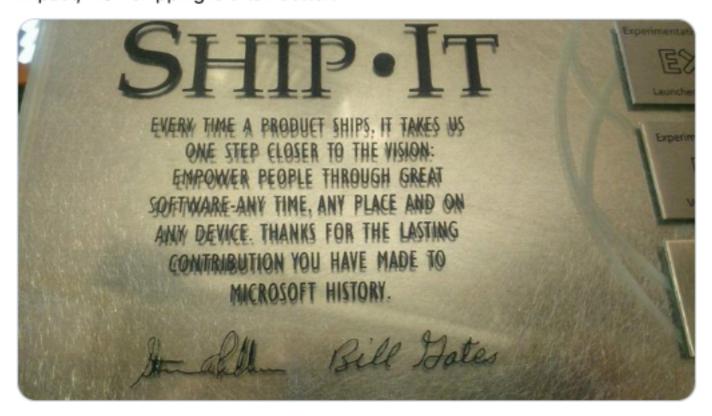
Ronny Kohavi Keynote Talk at KDD conference (Knowledge Discovery and Data Mining)

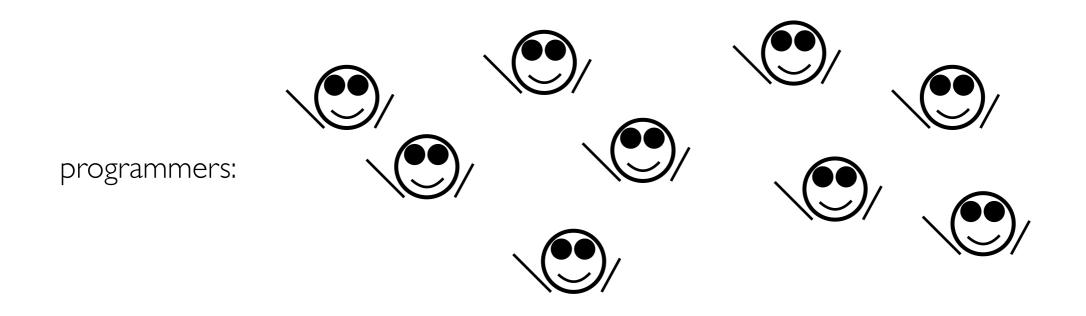
Title: Online Controlled Experiments: Lessons from Running A/B/n Tests for 12 years

Video: https://exp-platform.com/kdd2015keynotekohavi/

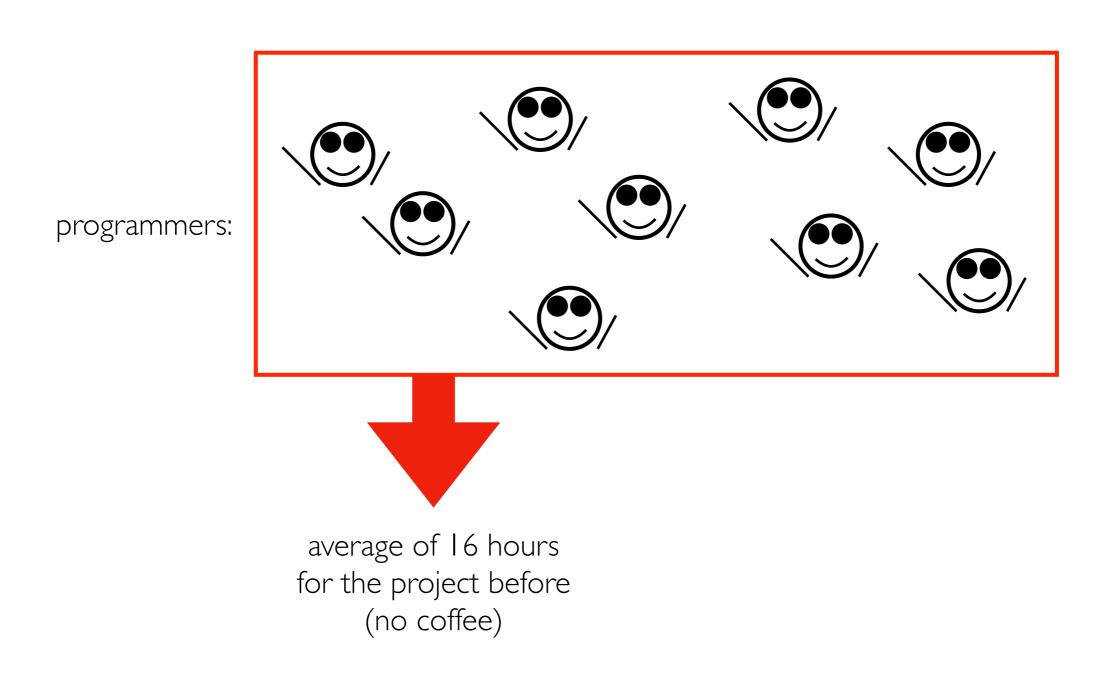
Ronny Kohavi @ronnyk · Nov 7, 2014

Microsoft stopped ship-it-awards today! With #abtesting, it's about userimpact; NOT shipping is often better!

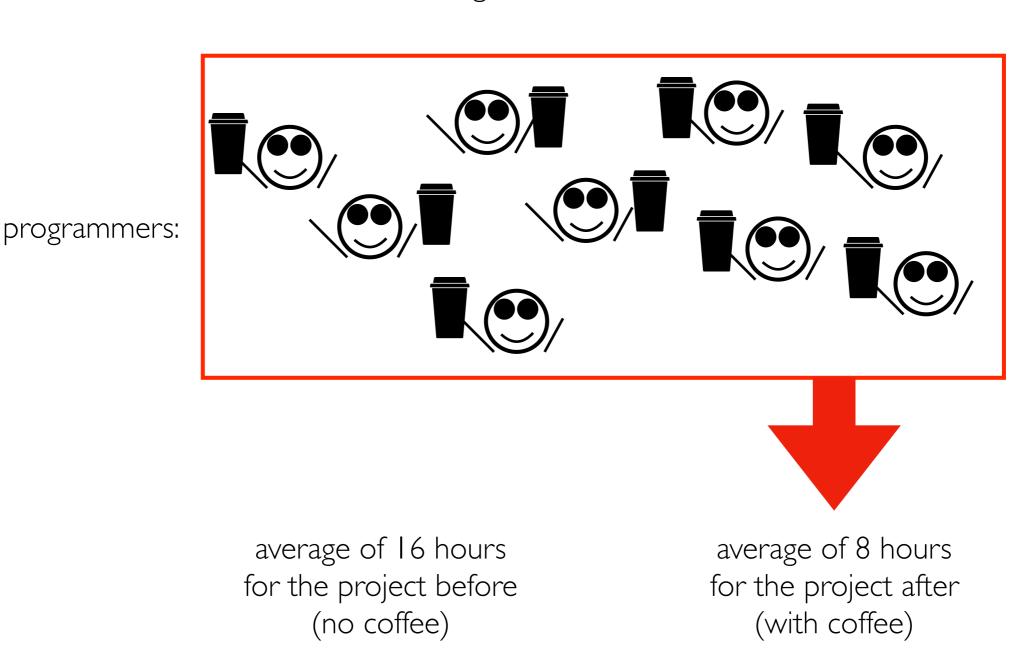




Design 1: before and after



Design 1: before and after



Design 1: before and after

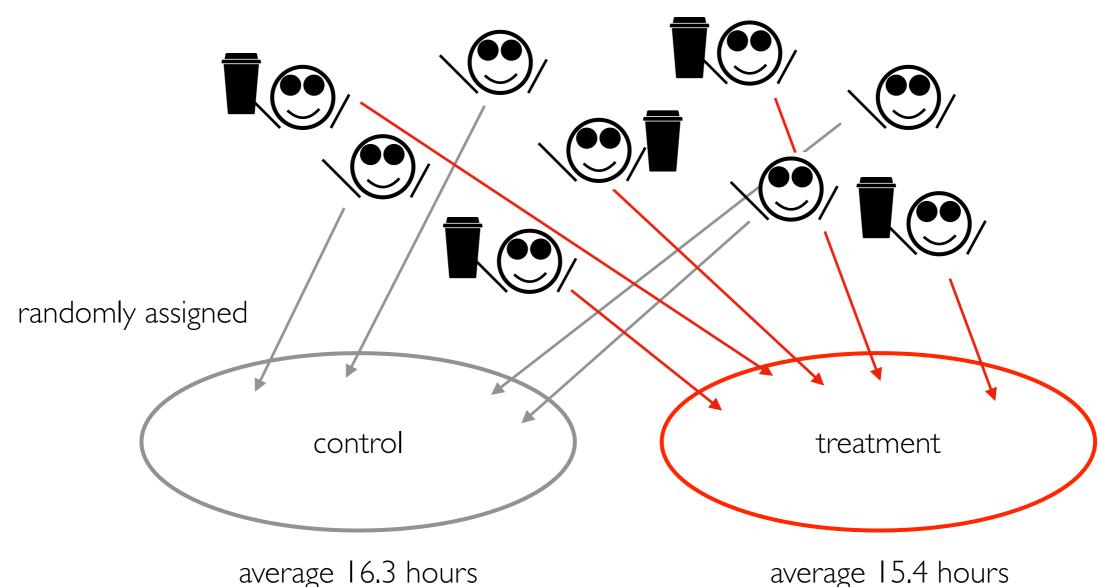
programmers:

concerns???

average of 16 hours for the project before (no coffee)

average of 8 hours for the project after (with coffee)

Design 2: randomly assigned control and treatment groups

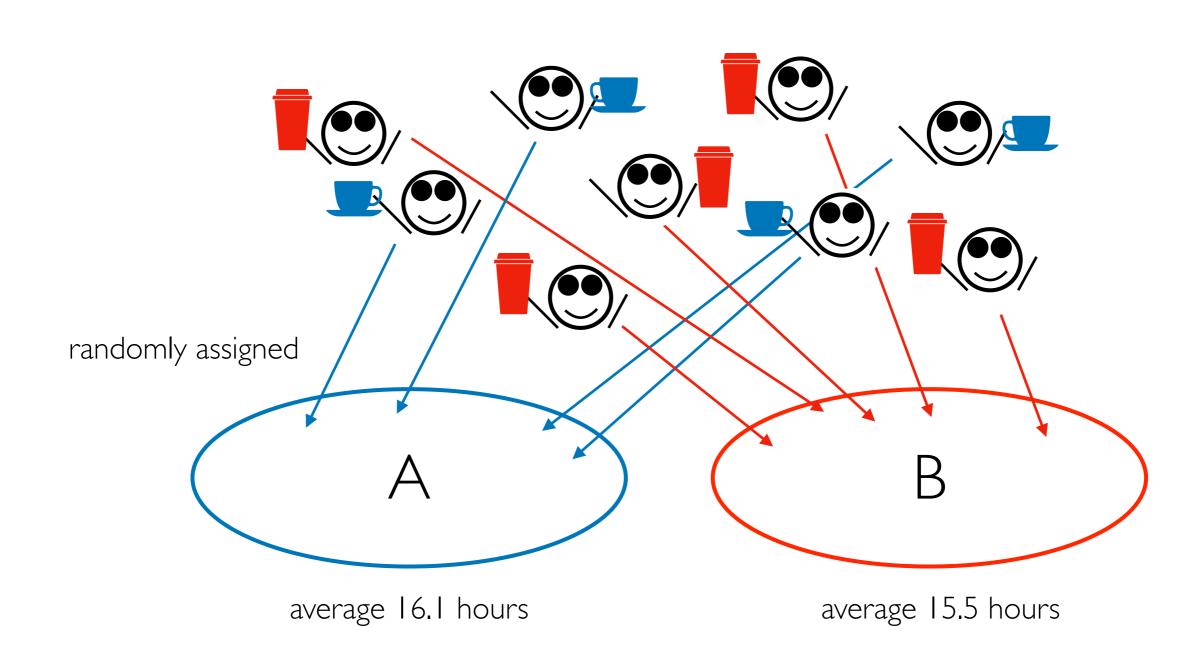


average 15.4 hours

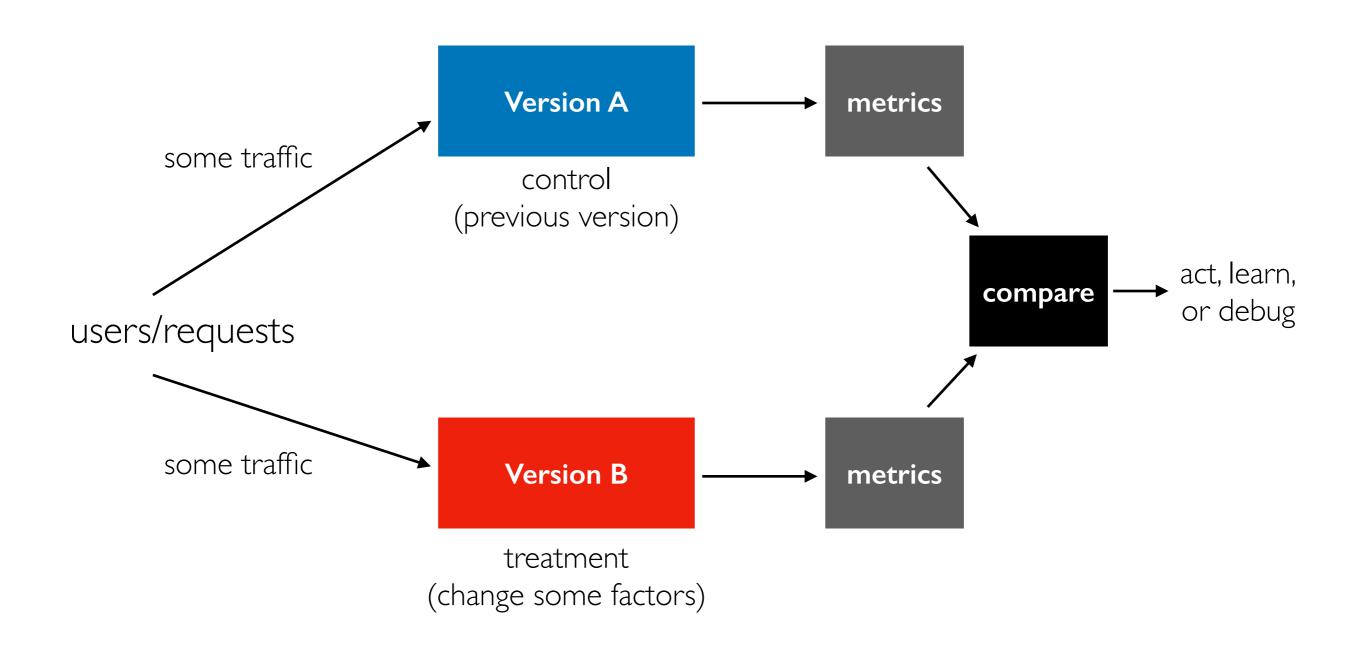
Experiment Design:

Is coffee or tea better for programming?

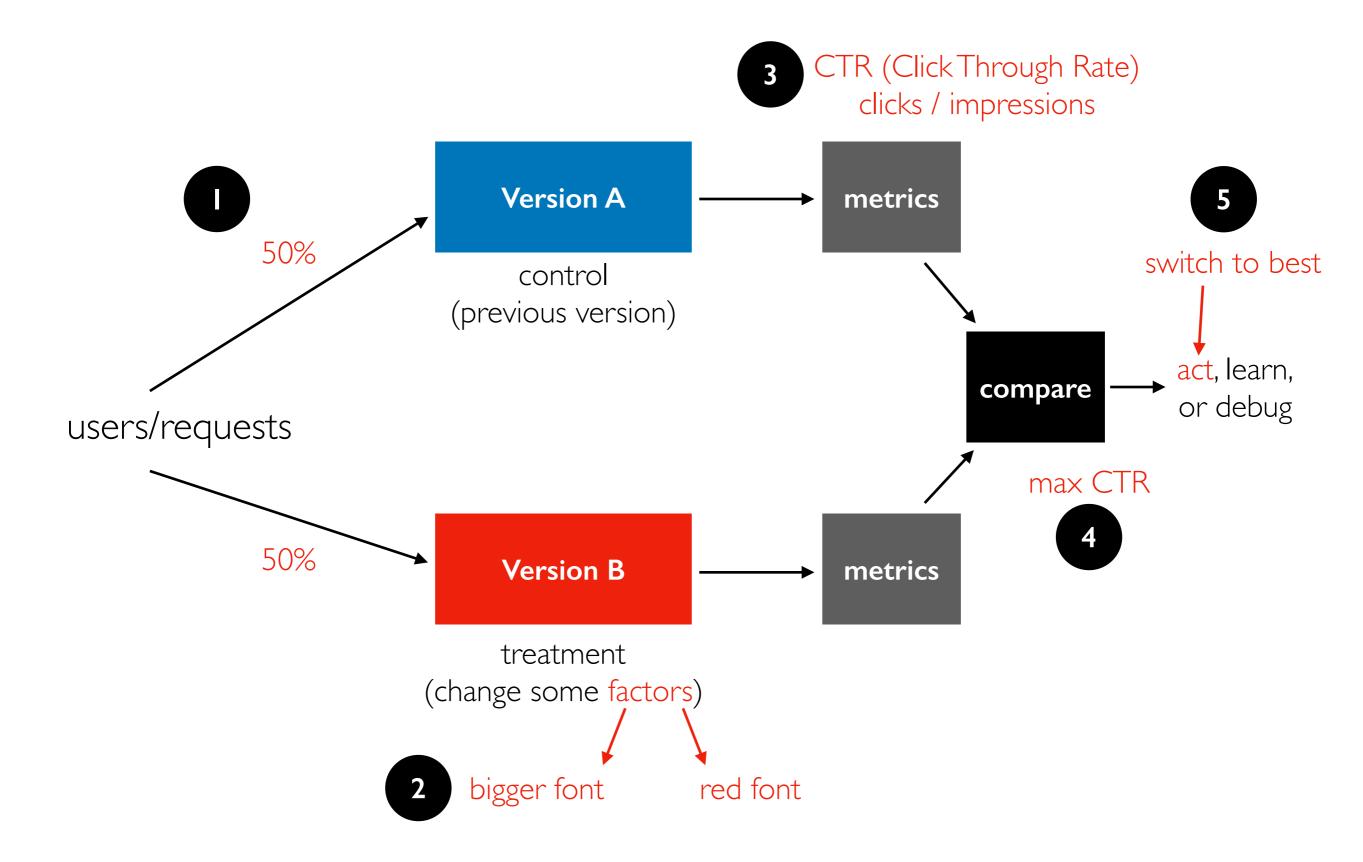
A/B Testing



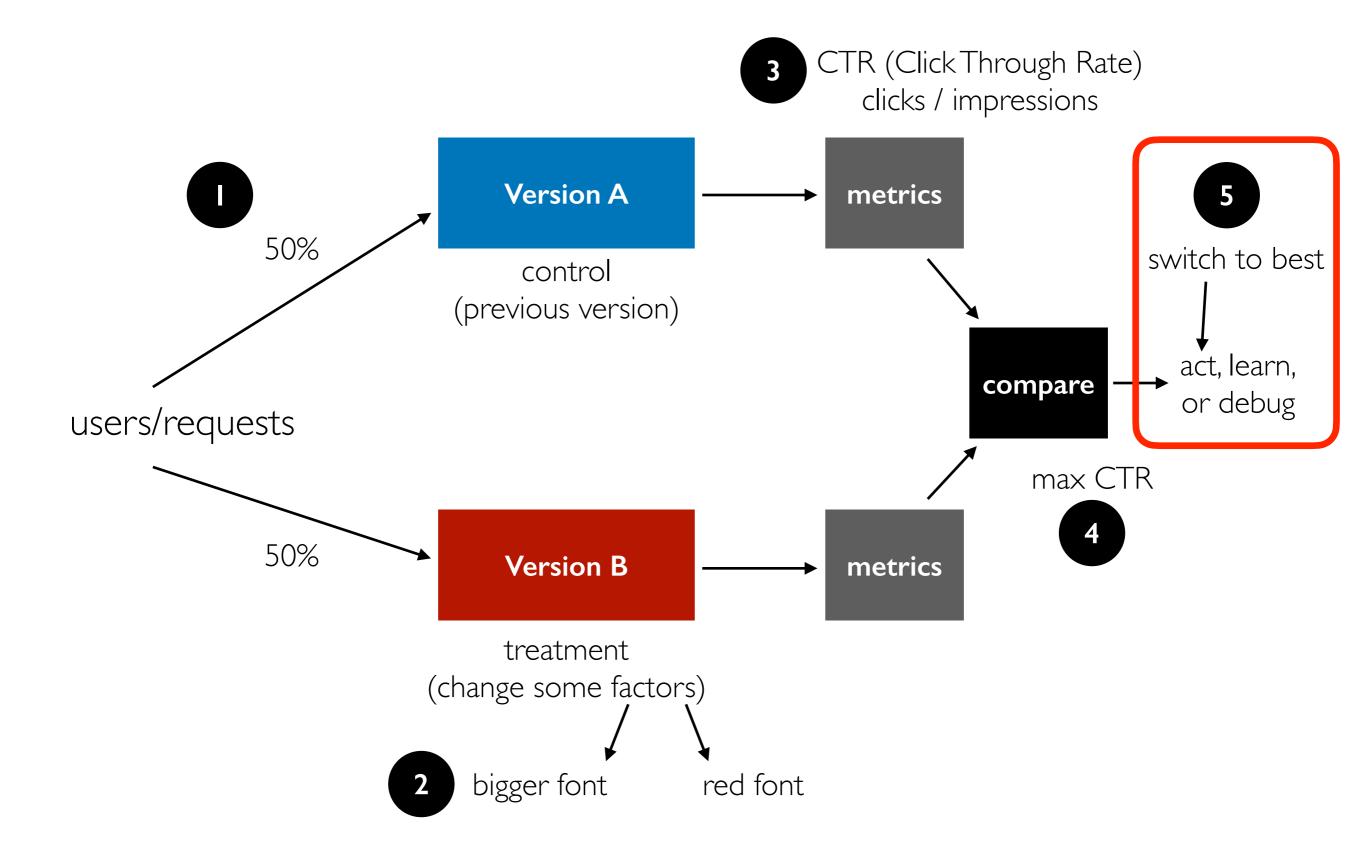
A/B Test Overview (for web applications!)



Example 1: Link to Donation Page

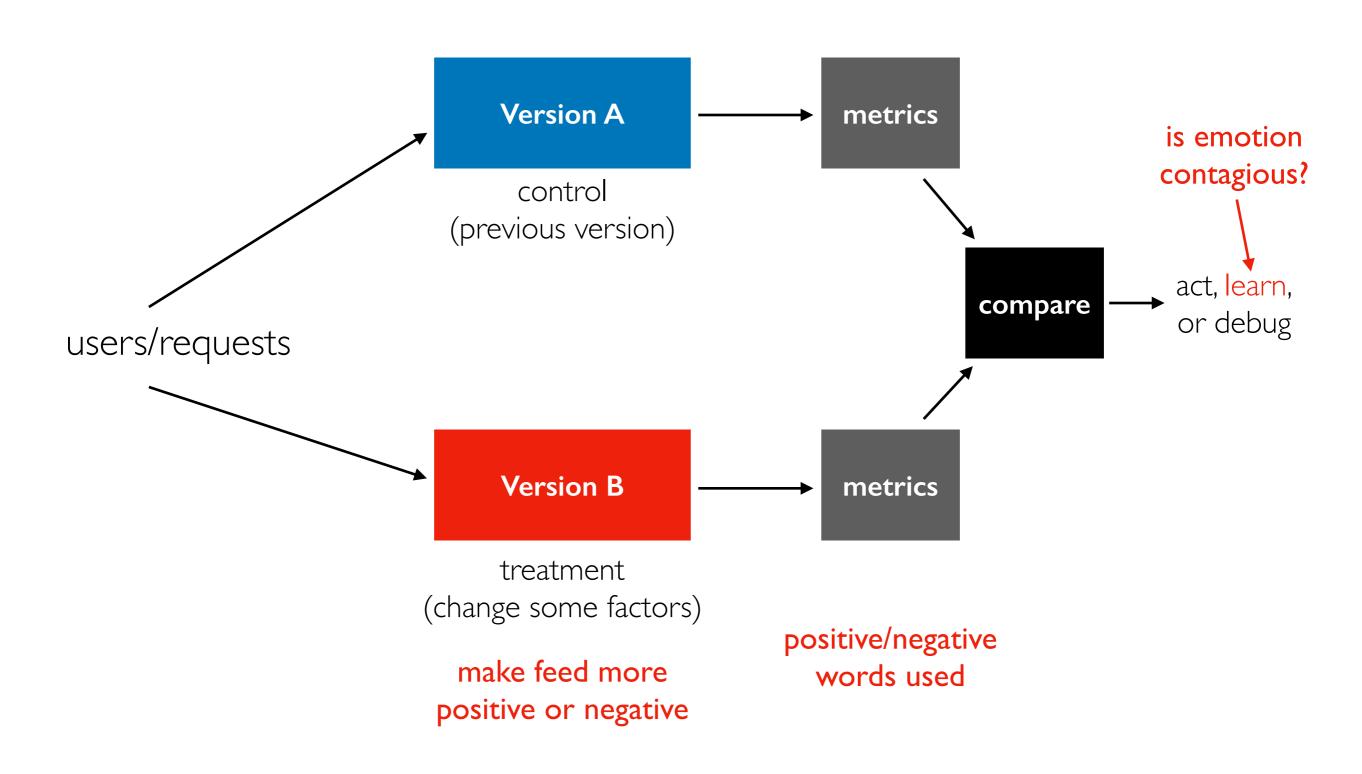


Lecture Outline



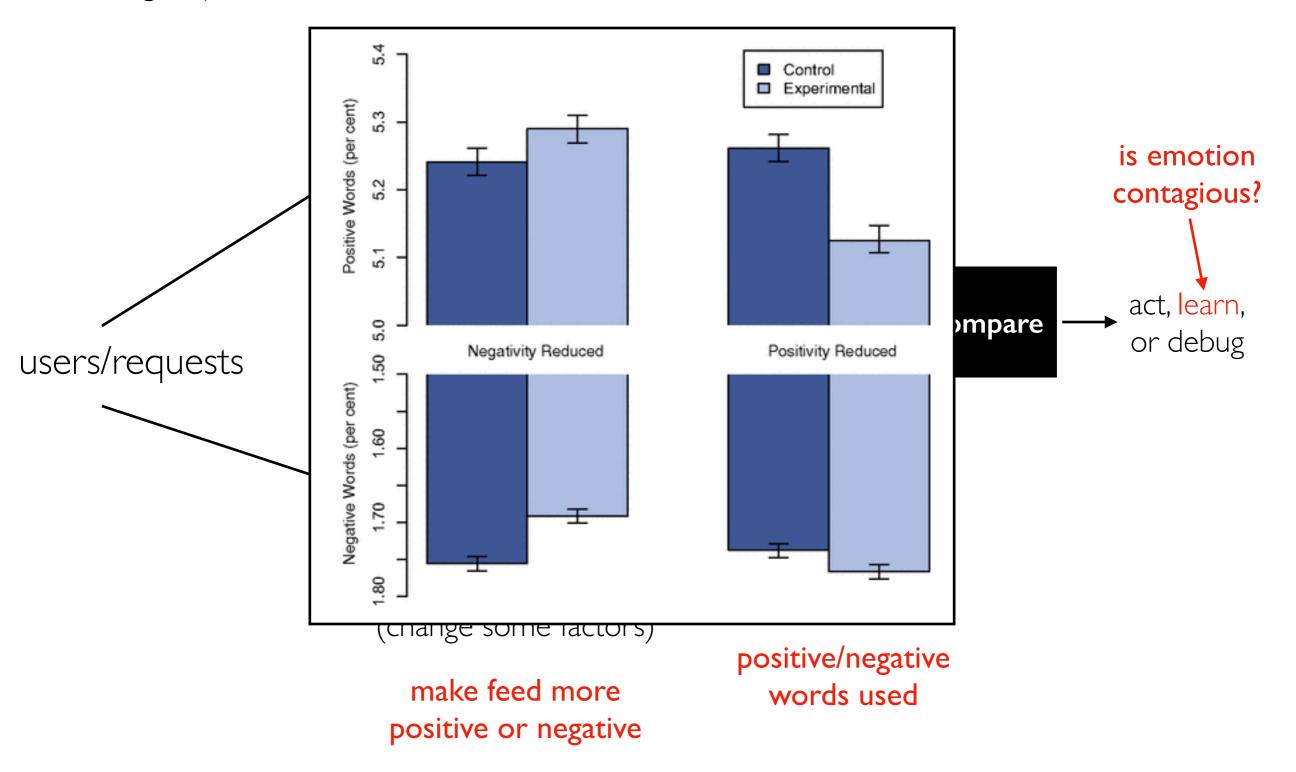
Example 2: Facebook Emotional Contagion Study

Reading: https://techcrunch.com/2014/06/29/ethics-in-a-data-driven-world/



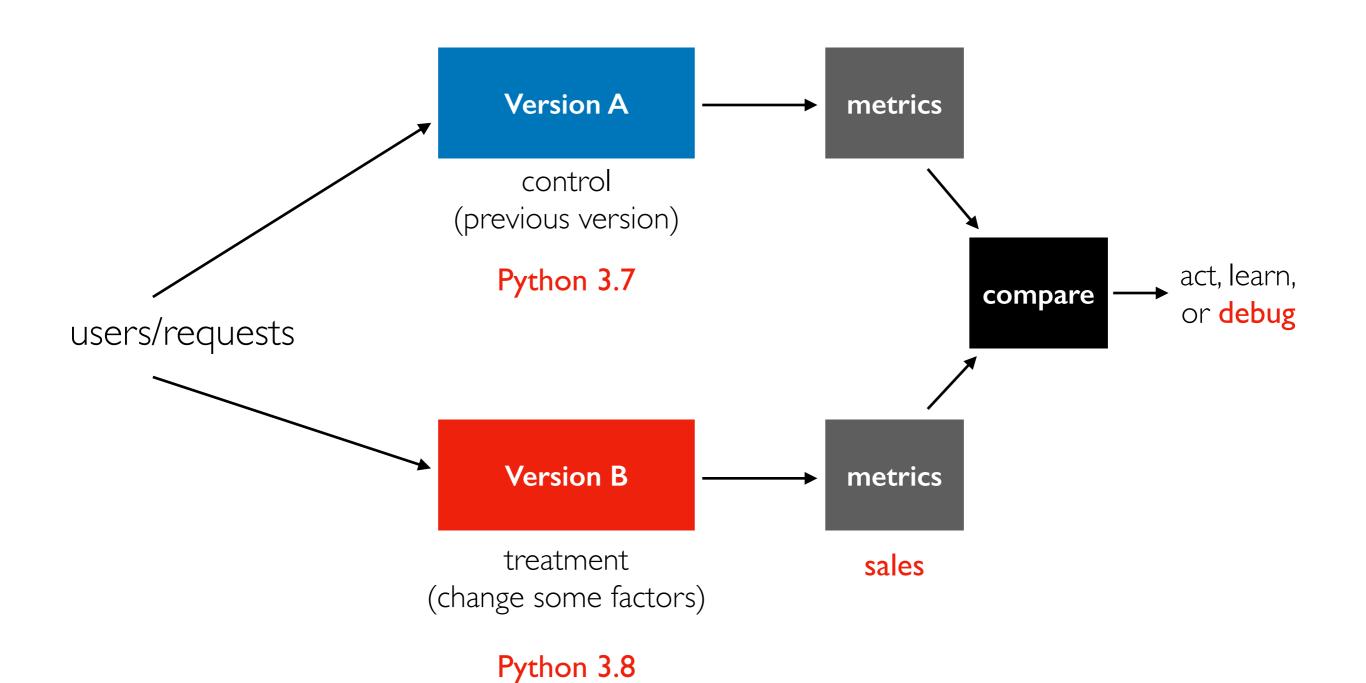
Example 2: Facebook Emotional Contagion Study

Reading: https://techcrunch.com/2014/06/29/ethics-in-a-data-driven-world/

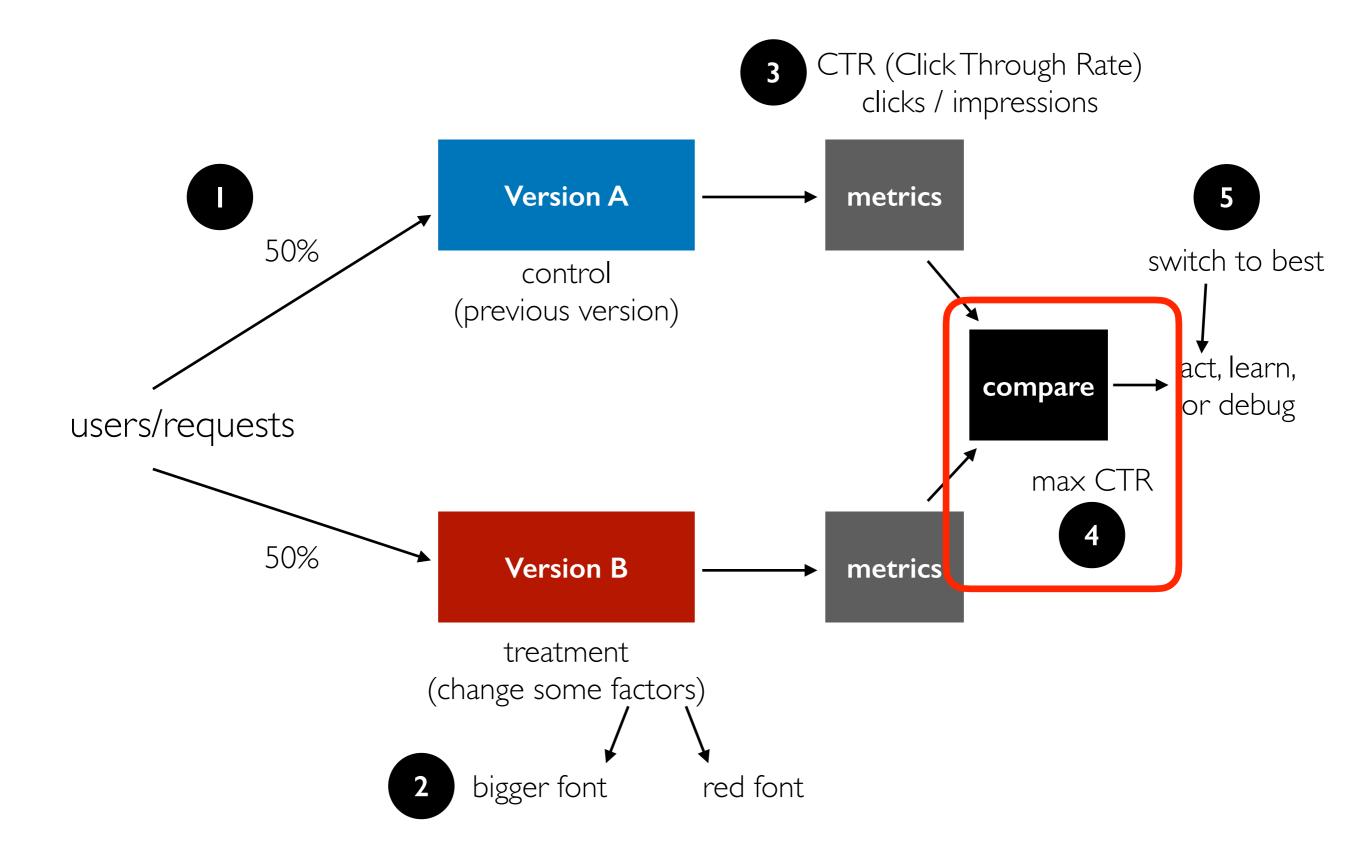


didn't need to submit to the IRB (Institutional Review Board) -- when should it be required?

Example 3: Update Python Version



Lecture Outline



Example Metric: CTR (Click-Through Rate)

CTR = clicks / impressions

"Impression" means user saw it

	click	no-click
A	12	68
В	6	14

df: contingency table

how many B impressions were there? what was B's CTR?

Example Metric: CTR (Click-Through Rate)

CTR = clicks / impressions

"Impression" means user saw it

	click	no-click
A	12	68
В	6	14

df: contingency table

how many B impressions were there? 20 what was B's CTR? 6/20 = 30%

Example Metric: CTR (Click-Through Rate)

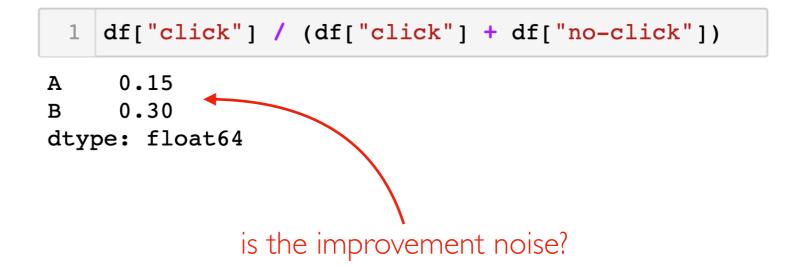
CTR = clicks / impressions

"Impression" means user saw it

click no-click

A 12 68B 6 14

df: contingency table



Example Metric: CTR (Click-Through Rate)

CTR = clicks / impressions

"Impression" means user saw it

click no-click

A	12	68
В	6	14

```
1 df["click"] / (df["click"] + df["no-click"])
A      0.15
B      0.30
dtype: float64
```

df: contingency table

pip3 install scipy

```
import scipy.stats as stats
    _, pvalue = stats.fisher_exact(df)
pvalue
    _https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html
```

Example Metric: CTR (Click-Through Rate)

CTR = clicks / impressions

"Impression" means user saw it

p-value is probability of seeing a difference this extreme (or more) if both ratios were generated by the same underlying process (the one most likely to generate this)

Click		no-click
A	12	68
В	6	14

"significant" means p-value is less than some threshold (e.g., 5%)

df: contingency table

false positive means it is significant even though underlying process is same

out of 200 neutral changes, how many will falsely show up as significant if we set our p-value threshold to 5%?

Example Metric: CTR (Click-Through Rate)

CTR = clicks / impressions

"Impression" means user saw it

p-value is probability of seeing a difference this extreme (or more) if both ratios were generated by the same underlying process (the one most likely to generate this)

	click	no-click
A	12	68
В	6	14
df: contingency table		

"significant" means p-value is less than some threshold (e.g., 5%)

false positive means it is significant even though underlying process is same

Example Metric: CTR (Click-Through Rate)

CTR = clicks / impressions

"Impression" means user saw it

out of 200 neutral changes, how many will falsely show up as significant if we set our p-value threshold to 5%?

10

p-value is probability of seeing a difference this extreme (or more) if both ratios were generated by the same underlying process (the one most likely to generate this)

click no-click

A 12 68

B 6 14

df: contingency table

"significant" means p-value is less than some threshold (e.g., 5%)

false positive means it is significant even though underlying process is same

```
1 import scipy.stats as stats
```

2 _, pvalue = stats.fisher_exact(df)

3 pvalue

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html

Example Metric: CTR (Click-Through Rate)

CTR = clicks / impressions

"Impression" means user saw it

	click	no-click
A	12	68
В	6	14

out of 200 neutral changes, how many will falsely show up as significant if we set our p-value threshold to 5%?

10

occasionally run A/A tests to make sure the system is working (false positive rate should be as expected)

df: contingency table

Example Metric: CTR (Click-Through Rate)

CTR = clicks / impressions

"Impression" means user saw it

	click	no-click
A	12	68
В	6	14

df: contingency table

3 outcomes, based on CTRs and significance

- A is significantly better
- B is significantly better
- neither wins

Example Metric: CTR (Click-Through Rate)

CTR = clicks / impressions

"Impression" means user saw it

	click	no-click
A	12	68
В	6	14

df: contingency table

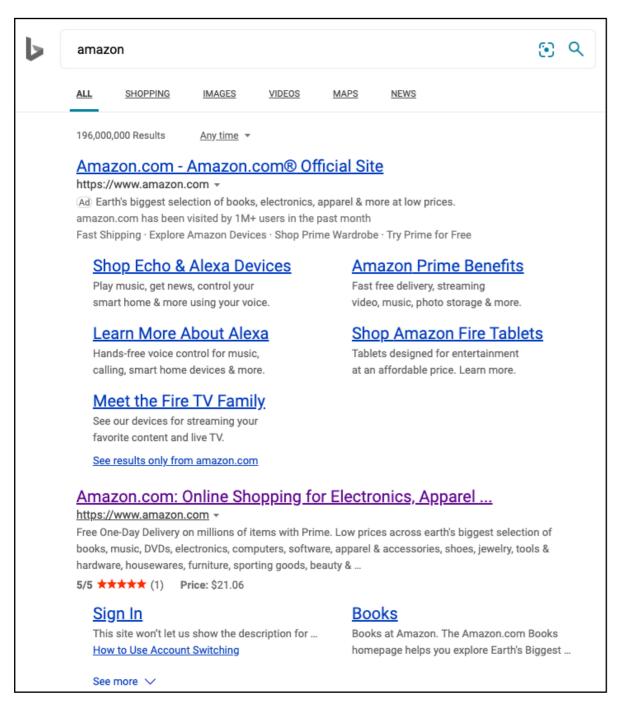
3 outcomes, based on CTRs and significance

- A is significantly better
- B is significantly better
- neither wins

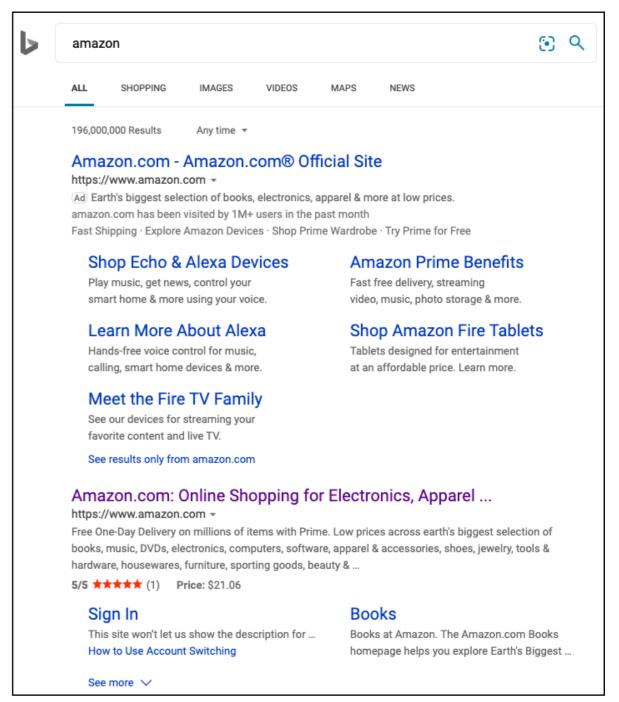
- collect more data
- ignore significance, just look at CTR (indecision may be the worst decision)
- choose previous version A (probably fewer bugs)
- choose new version B (for simplicity or other merits)

Which Version Has Higher Whole-page CTR?

Version A

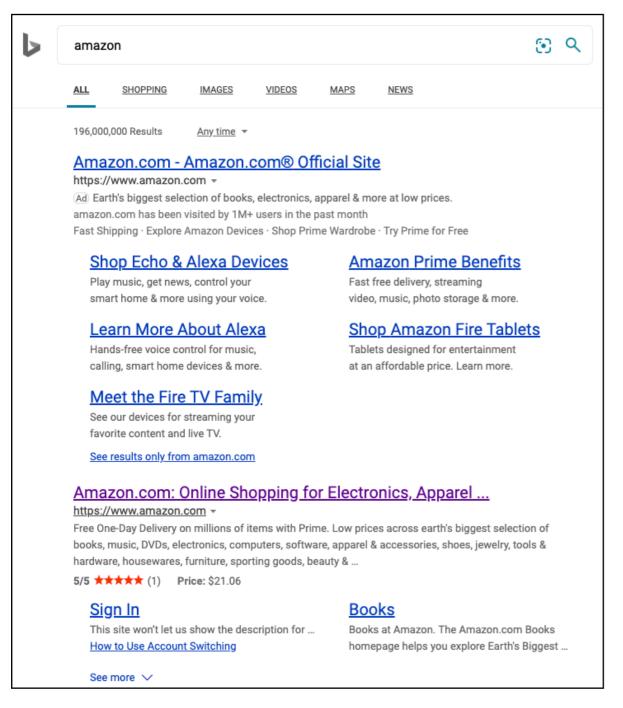


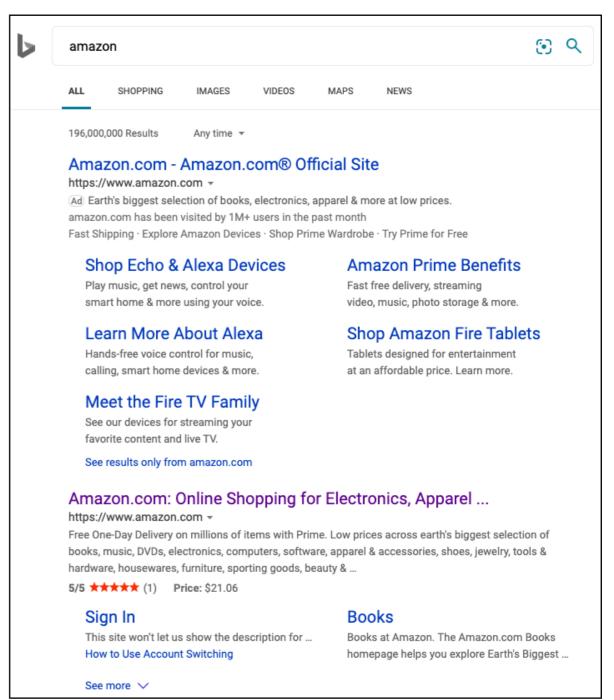
Version B



Which Version Has Higher Whole-page CTR?

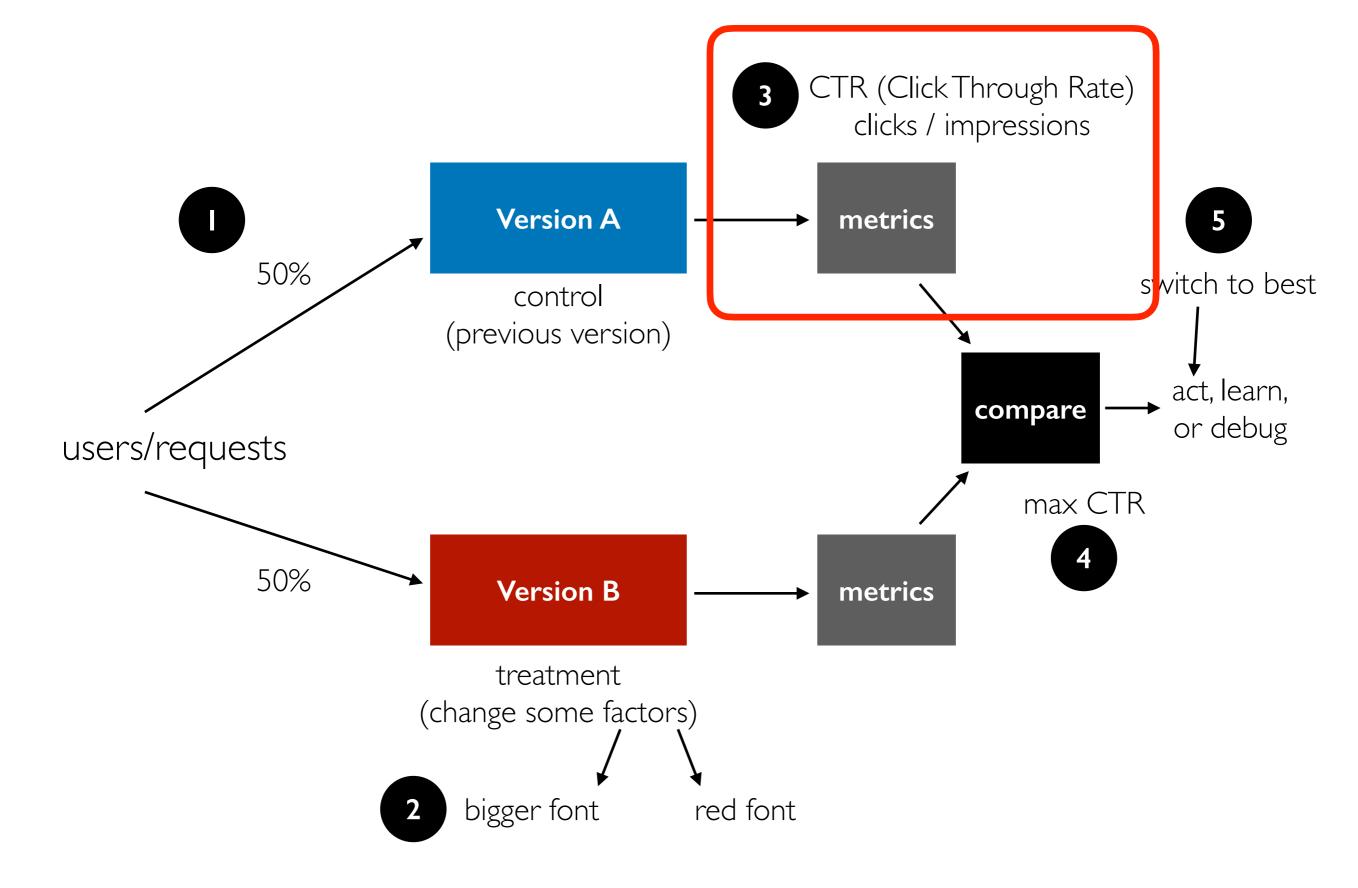
Version A Version B





Lesson: metrics should inform humans, not directly determine decisions

Lecture Outline



Things to measure:

- clicks -- when are they bad?

Things to measure:

- clicks
- scroll (did they read it?)
- subscribe/unsubscribe
- other ideas?

Things to measure:

- clicks
- scroll (did they read it?)
- subscribe/unsubscribe
- purchases/returns
- hover (did they think about it?)
- shares
- likes/upvotes
- comments

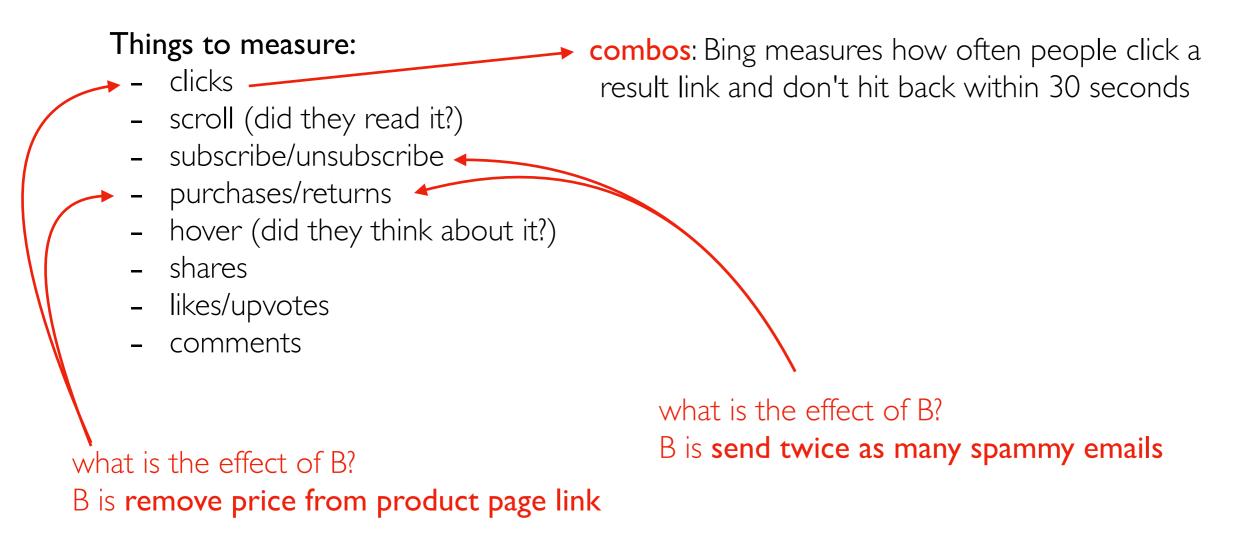
Things to measure:

- clicks -
- scroll (did they read it?)
- subscribe/unsubscribe
- purchases/returns
- hover (did they think about it?)
- shares
- likes/upvotes
- comments

combos: Bing measures how often people click a result link and don't hit back within 30 seconds

Things to measure: - clicks - scroll (did they read it?) - subscribe/unsubscribe - purchases/returns - hover (did they think about it?) - shares - likes/upvotes - comments combos: Bing measures how often people click a result link and don't hit back within 30 seconds result link and don't hit back within 30 seconds within 30 seconds result link and don't hit back within 30 seconds what is the effect of B?

B is send twice as many spammy emails



Things to measure:

- clicks
- scroll (did they read it?)
- subscribe/unsubscribe
- purchases/returns
- hover (did they think about it?)
- shares
- likes/upvotes
- comments

what is the effect of B?
B is remove price from product page link

combos: Bing measures how often people click a result link and don't hit back within 30 seconds

result link and don't hit back within 30 seconds

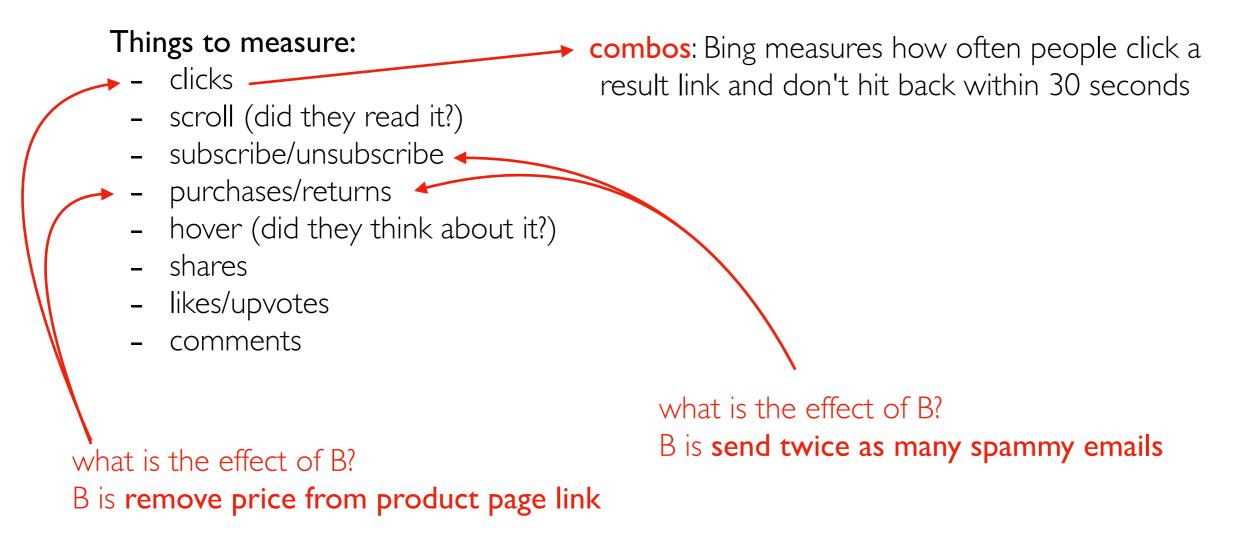
what is the effect of B?

B is send twice as many spammy emails

Lesson: it's easy to shift clicks

Lesson: it's hard to measure long-term effects (noisy!), so use common sense

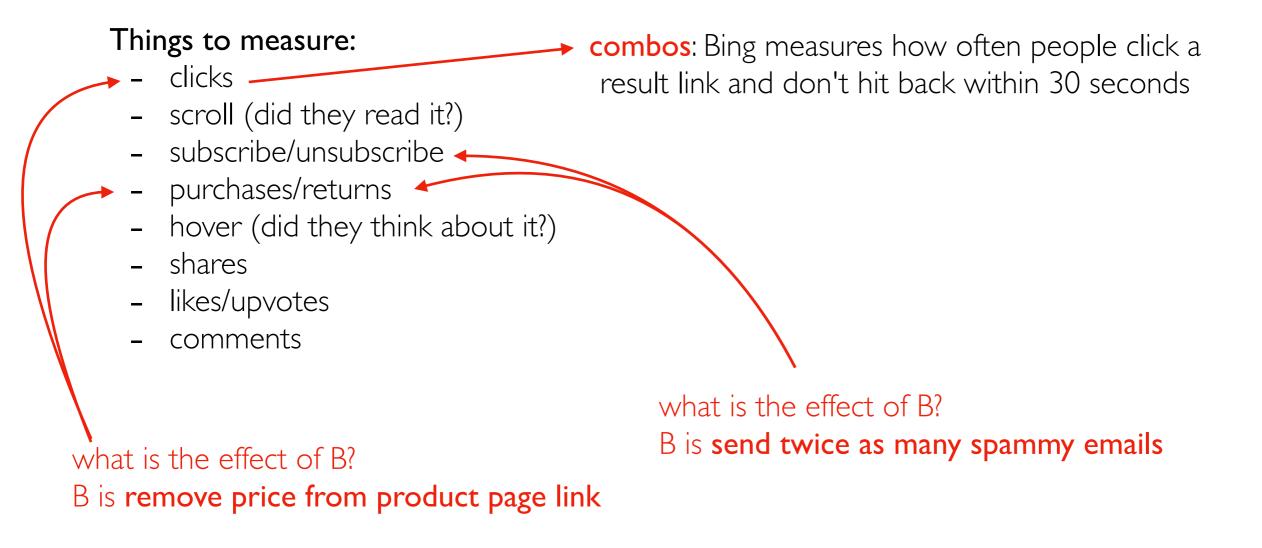
Metrics



Decide beforehand on one OEC metric: Overall Experiment Criterion

Bing has thousands of debug metrics, but only 4 OECs.

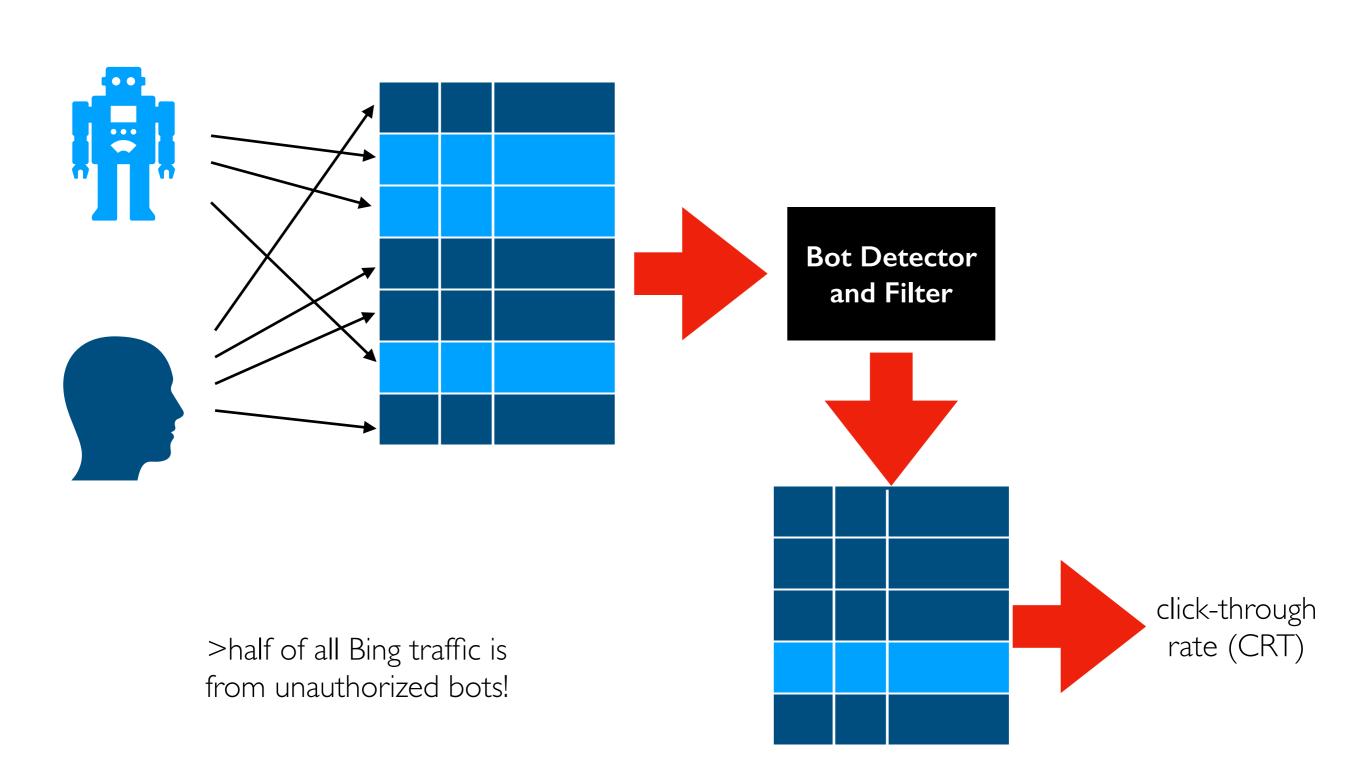
Metrics



Decide beforehand on one OEC metric: Overall Experiment Criterion

- Bing has thousands of debug metrics, but only 4 OECs. Try to consider cost as well as benefit!
- As a rule of thumb, "if you make something bigger, more people will click on it" ~ Ron Kovani
- Making part of the site better could hurt other parts if you have a naive OEC

Metrics Should be on Uniformly Cleaned Data



Lecture Outline



Run two variants side by side: control (A) and treatment (B)

Treatment consists of one or more factors changed:

- wording
- slowdown
- changes "invisible" to user (e.g., updates)
- what else?

Run two variants side by side: control (A) and treatment (B)

Treatment consists of one or more factors changed:

- wording
- slowdown
- changes "invisible" to user (e.g., updates)
- time of day (for emails sent)
- font, size, color, icons, graphic design in general
- recommendation algorithm used
- sequence of steps necessary to make a purchase
- database that is faster for some queries (and slower for others)

Run two variants side by side: control (A) and treatment (B)

Treatment consists of one or more factors changed:

- wording
- slowdown
- changes "invisible" to user (e.g., updates)
- time of day (for emails sent)
- font, size, color, icons, graphic design in general
- recommendation algorithm used
- sequence of steps necessary to make a purchase
- database that is faster for some queries (and slower for others)

many experiments are big time investments (require significant coding)!

Lesson: don't be too attached to your work, be redundant and ready to throw things away

Run two variants side by side: control (A) and treatment (B)

Treatment consists of one or more factors changed:

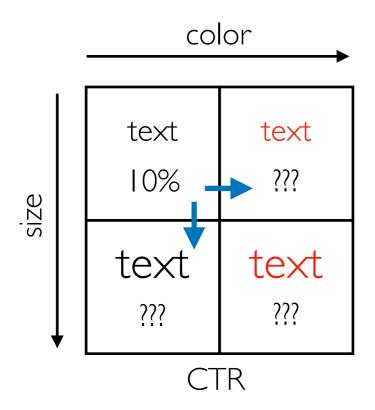
- wording
- slowdown
- changes "invisible" to user (e.g., updates)
- time of day (for emails sent)
- font, size, color, icons, graphic design in general
- recommendation algorithm used
- sequence of steps necessary to make a purchase
- database that is faster for some queries (and slower for others)

many experiments are big time investments (require significant coding)!

Lesson: don't be too attached to your work, be redundant and ready to throw things away

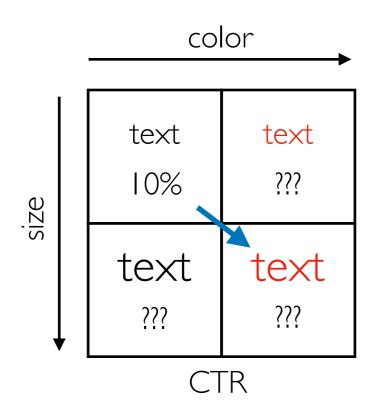
there's also plenty of low-hanging fruit!

"stop debating, it's easier to get the data" ~ Ron Kohavi



Option I: OFAT (one factor at a time)

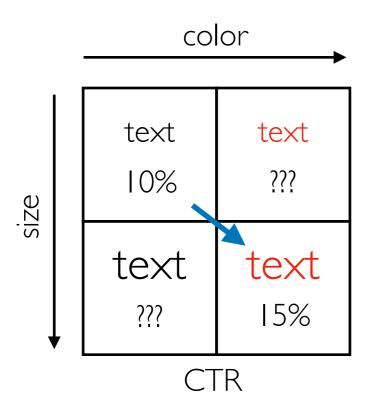
Hypothesis: large red font will be better



Option I: OFAT (one factor at a time)

Option 2: introduce two factors at once

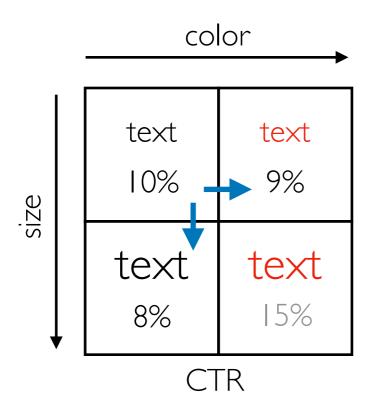
Hypothesis: large red font will be better



Hypothesis: large red font will be better

Option I: OFAT (one factor at a time)

Option 2: introduce two factors at once can choose a good design, but didn't learn what factors are important



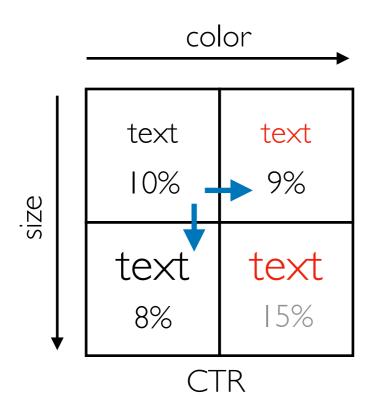
Hypothesis: large red font will be better

Option I: OFAT (one factor at a time)

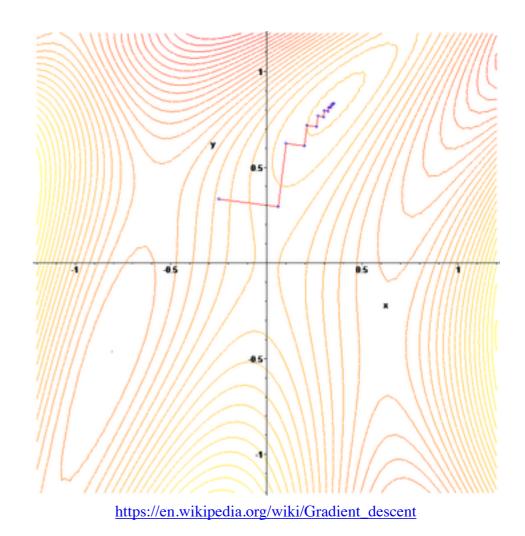
can usually learn more, but will

never exploit factor interactions

Option 2: introduce two factors at once can choose a good design, but didn't learn what factors are important

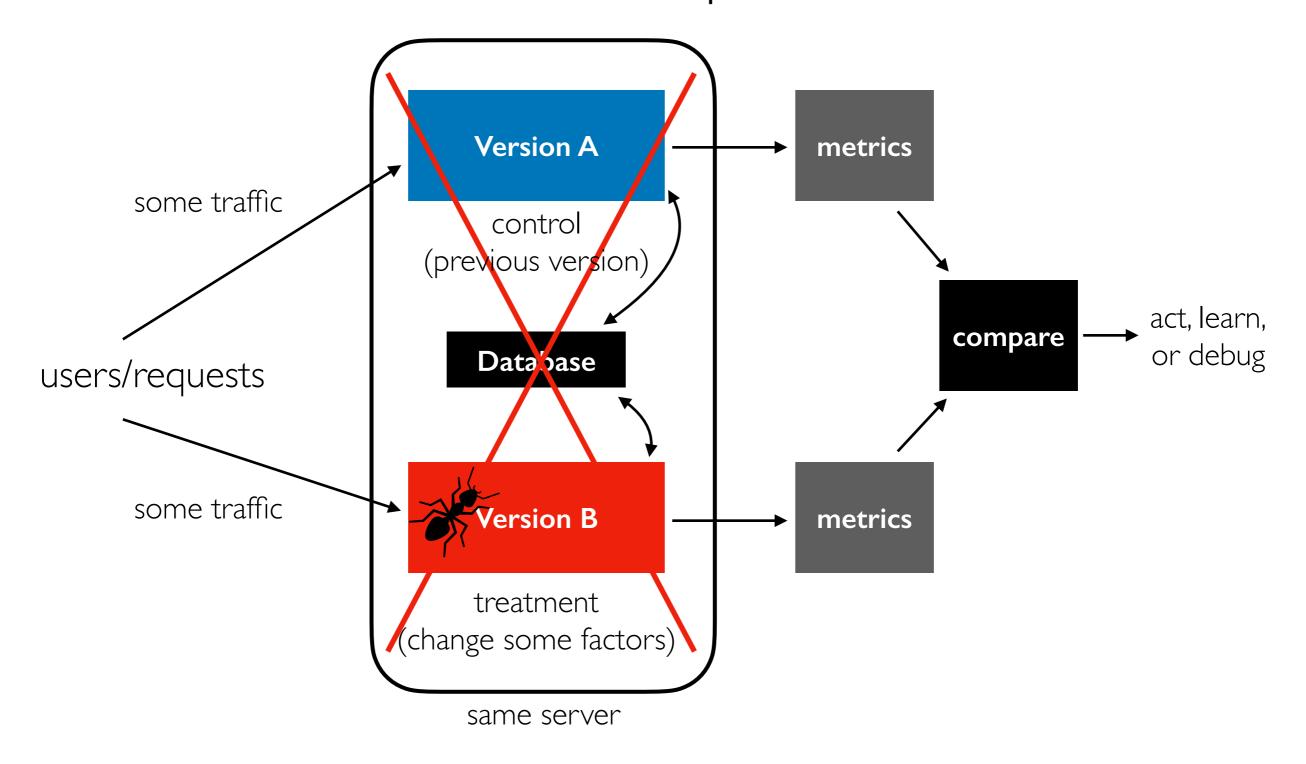


Hypothesis: large red font will be better



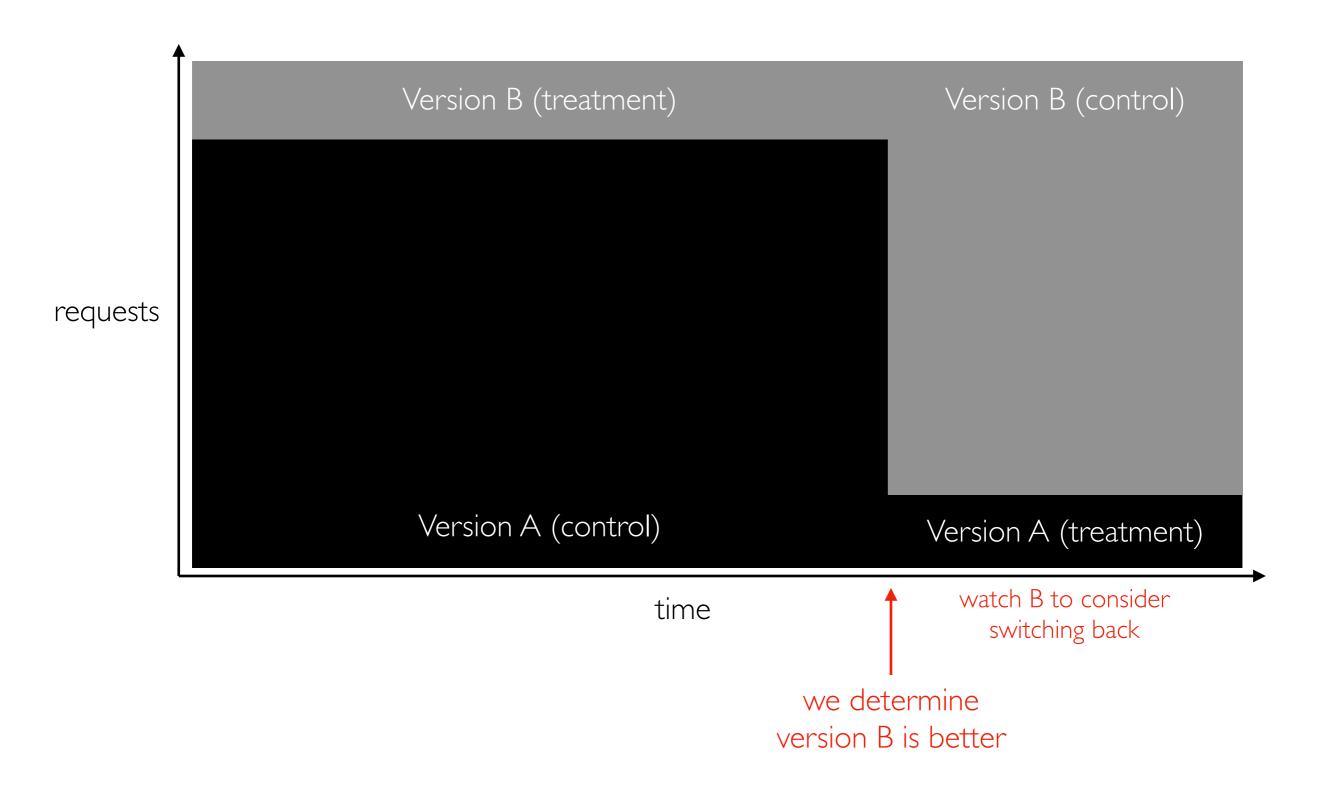
Hill climbing: imagine you're trying to find a peak (representing higher CTR). Taking small steps in the steepest direction is usually best, but not if you reach a local peak/optimimum

Control/Treatment Disruptions

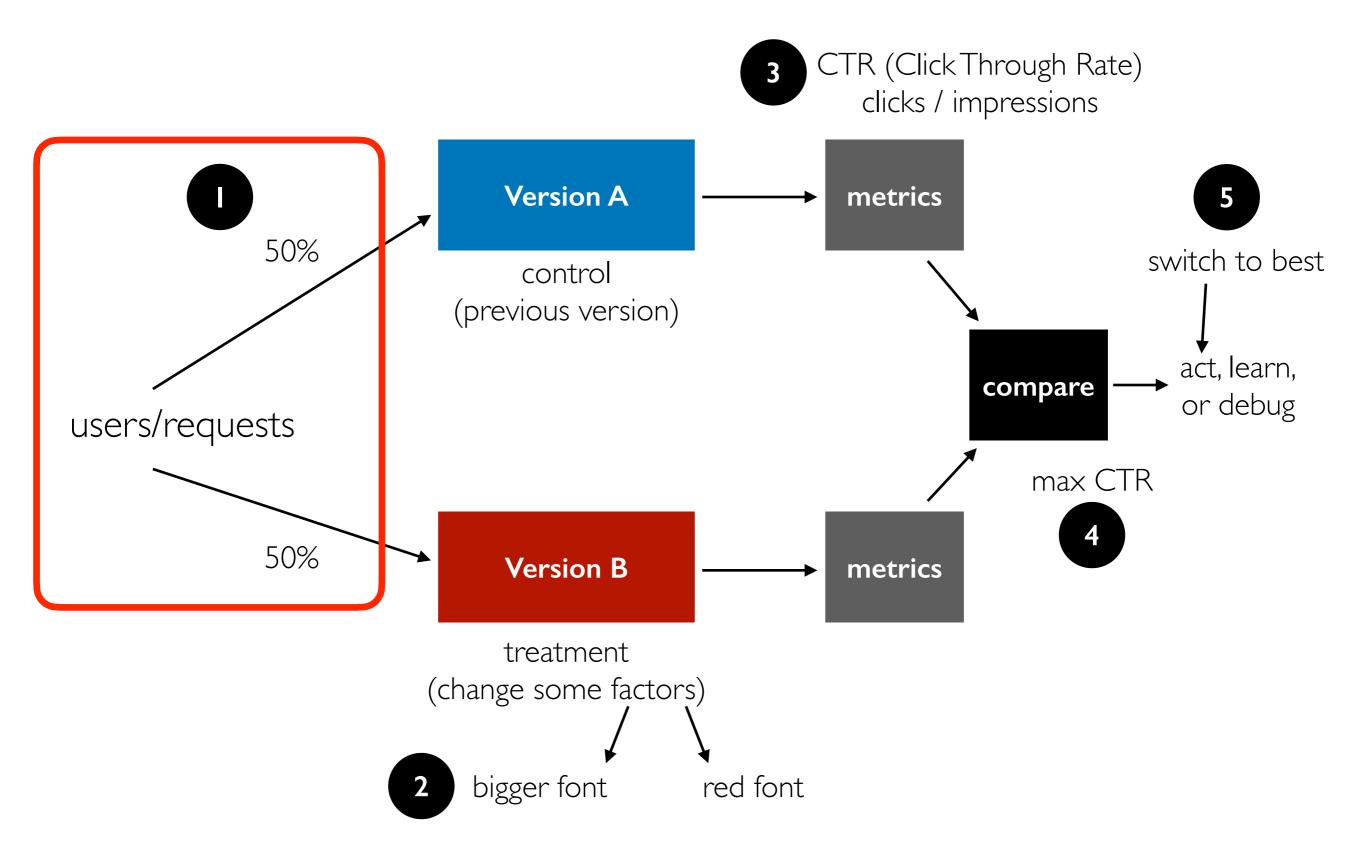


Different variants may save databases/servers, affecting performance of both. Bugs crashing the server will be especially bad! Metrics won't show the true blame.

What if the real factor is **novelty**?

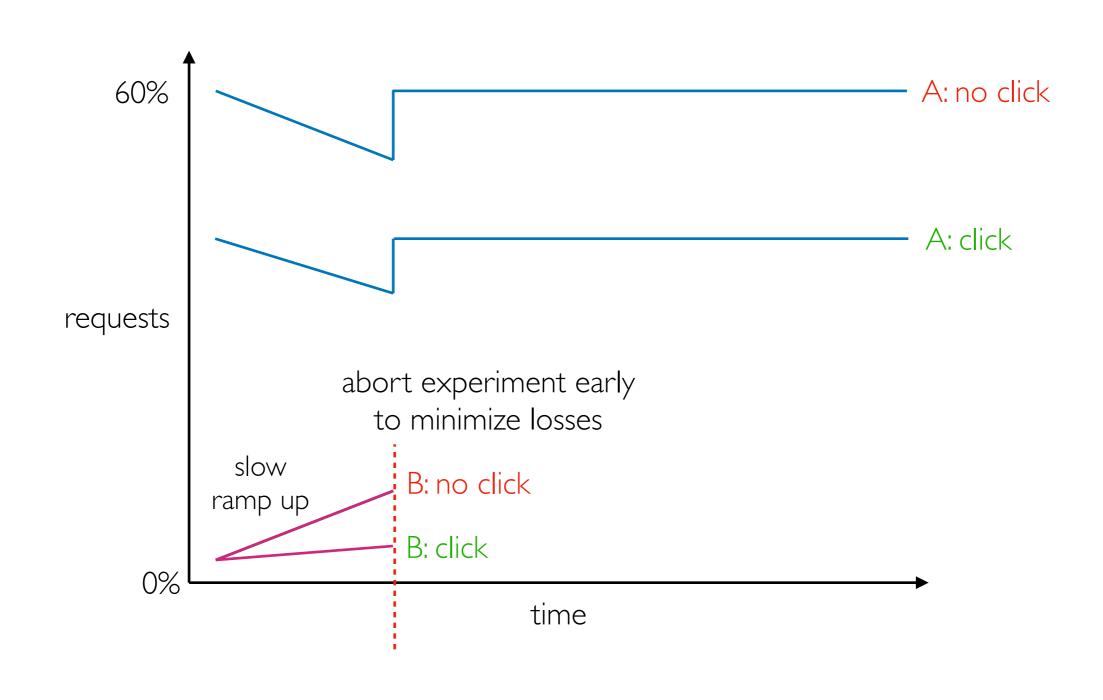


Lecture Outline



What to split

Don't go straight to 50/50!



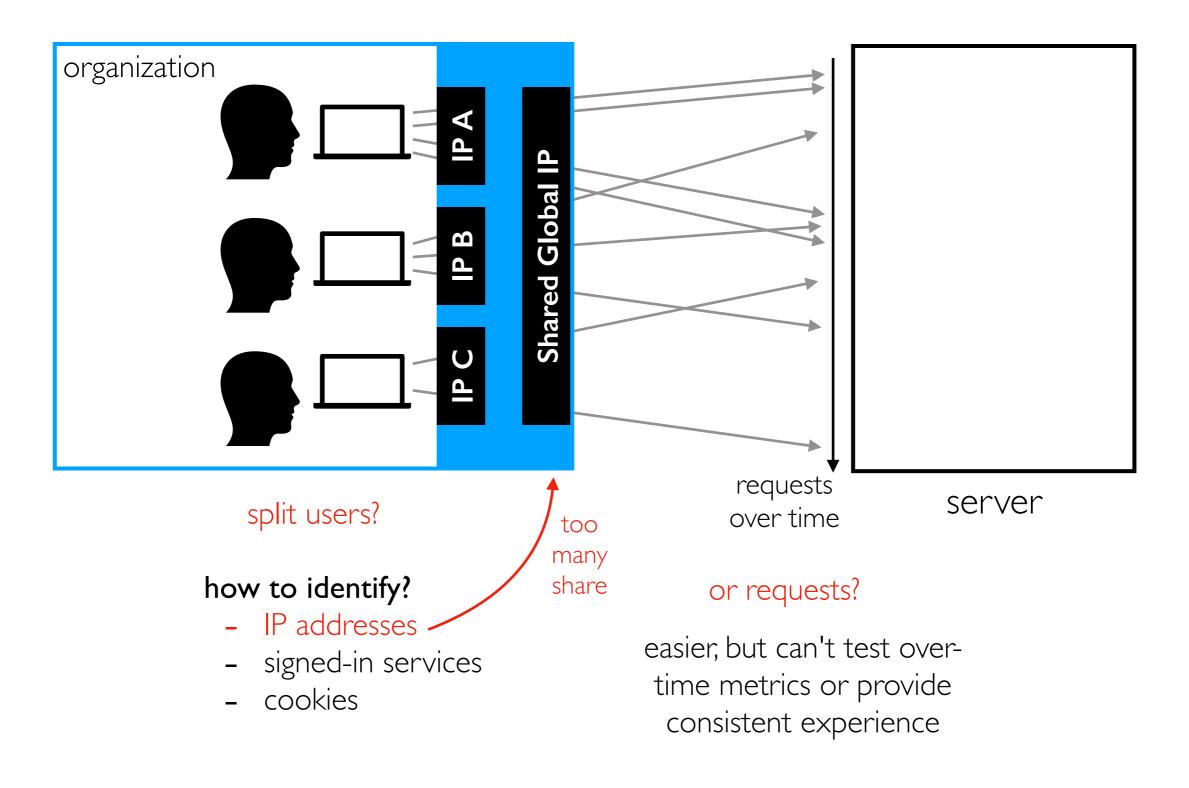


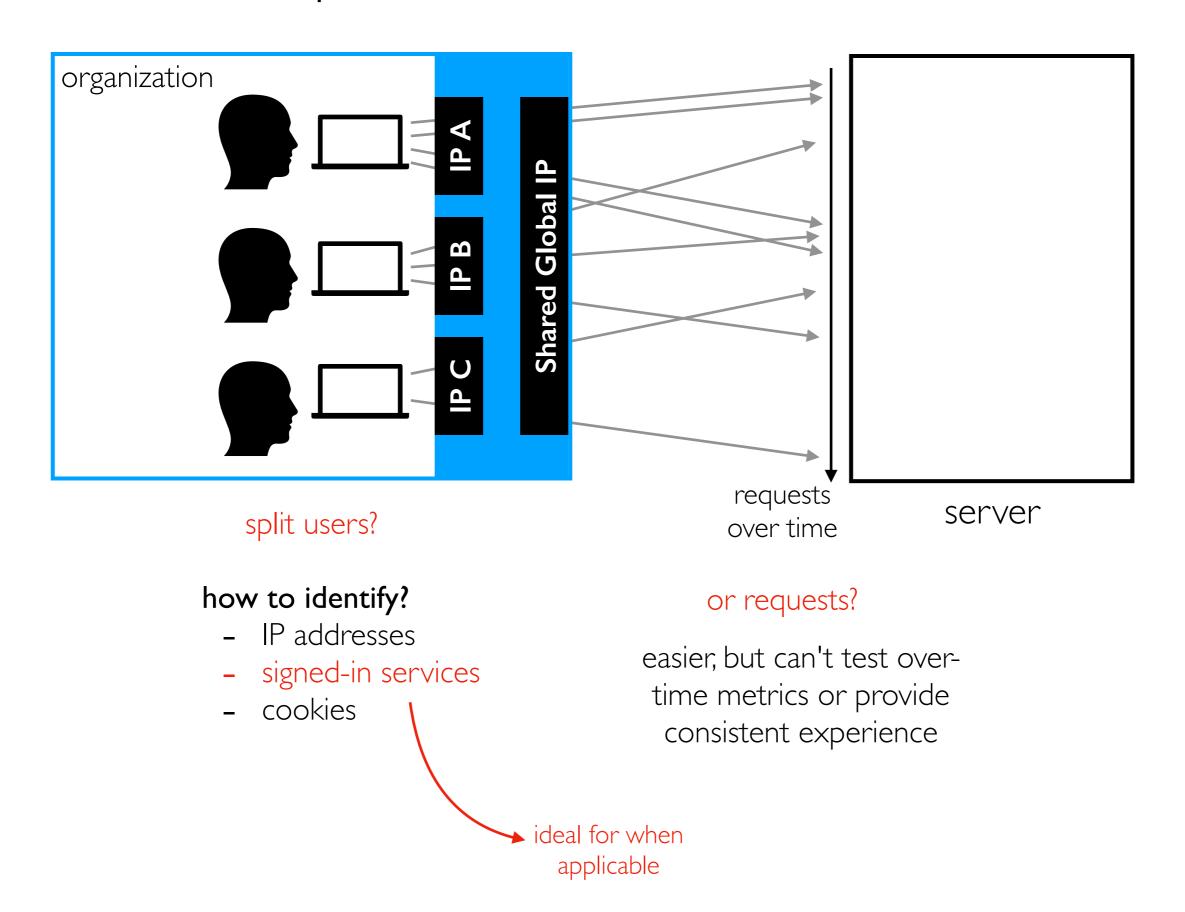
how to identify?

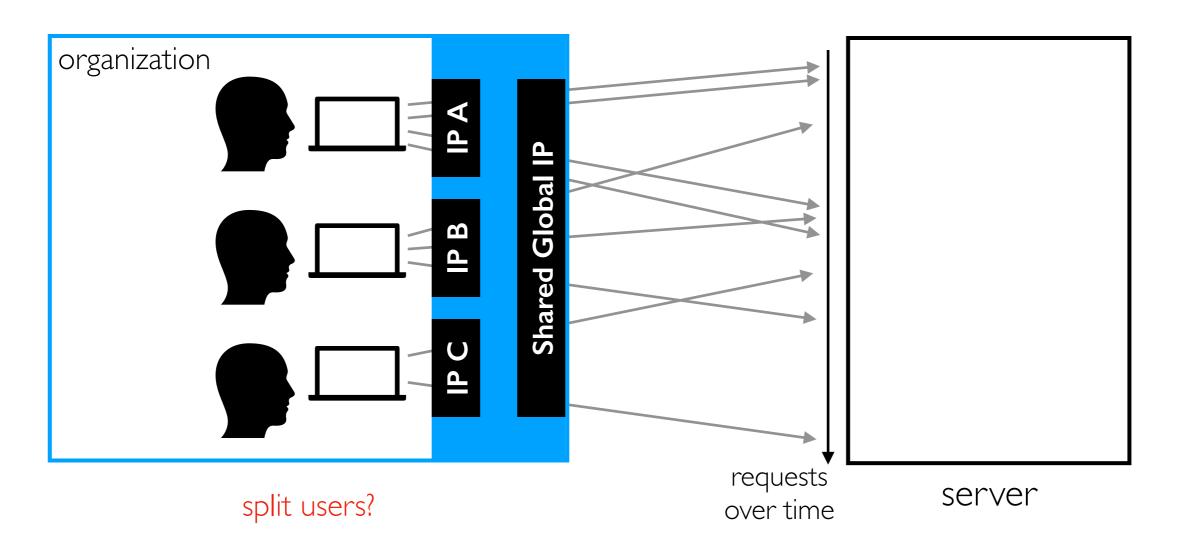
- IP addresses
- signed-in services
- cookies

or requests?

easier, but can't test overtime metrics or provide consistent experience







how to identify?

- IP addresses
- signed-in services
- cookies

or requests?

easier, but can't test overtime metrics or provide consistent experience

Cookies

Cookies are info that sites ask browsers to store locally and upload later.

```
from flask import request, Response, Flask
app = Flask(name)
                                           dict of cookies
@app.route('/')
def index():
    print(request.cookies)
    user_id = request.cookies.get("user", None)
    if user id == None:
        user id = new id()
    resp = Response("hello")
    resp.set_cookie("user", user_id)
    return resp
                      key
                              value
def new id():
    import time
                             #TODO: get better identifiers
    return str(time.time())
app.run(host="0.0.0.0")
```

Cookies

Cookies are info that sites ask browsers to store locally and upload later.

```
from flask import request, Response, Flask
app = Flask(name)
                                           dict of cookies
@app.route('/')
def index():
    print(request.cookies)
    user_id = request.cookies.get("user", None)
    if user id == None:
        user id = new id()
    resp = Response("hello")
    resp.set_cookie("user", user_id)
    return resp
                      key
                               value
def new id():
    import time
                             #TODO: get better identifiers
    return str(time.time())
app.run(host="0.0.0.0")
                                     lncognito
```

More accurace than IP, but cookie churn, incognito mode, and local laws may limit...

Summary

Goals

- make decisions, learn, debug

Comparisons

- significance testing

Metrics

- simple or combos
- clean uniformly
- choose OEC up front
- think long-term

Version A control (previous version) users/requests treatment (change some factors) metrics metrics metrics act, learn, or debug

Treatments

- one or more factors
- factors may require a lot of coding/design work!
- OFAT usually best for learning
- check the novelty factor with a flipped A/B test after decision

Splitting Traffic

- ramp up slowly
- split requests or users (how to distinguish?)