1 320] Special Methoc

Tyler Caraza-Harter

Review

Review Classes

CLASSES AND OTHER TYPES OBJECTS

person

https://www.macys.com/shop/product/martha-stewart-collection-set-of-6-cookie-cutters-created-for-macys 2ID=5467270

https://www.macys.com/shop/product/martha-stewart-collection-set-of-6-cookie-cutters-created-for-macys?ID=5467270

Review Classes

class Dog: which one is an attribute!
def init(dog): |. dog
print("created a dog") 2. name
dog.name = name 3. mult
dog.age = age 4. fido

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog()

Review Classes

class Dog:
def init(dog):
print("created a dog") is this printed? do we crash?
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog()

Review Classes

class Dog:
def 1init (dog, name, age):
print("created a dog") is this printed? do we crash?
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

Review Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

rspeak(fido, 5) # |
fido.speak(5) #2 . | :
Dog.speak(fido, 5) 43 — which call won't work?
type(fido).speak(fido, 5) #4

Review Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

lspeakffi&e, 5) H
;clago;:ziil({éi;o 5) z § — which call won't work?
* ’
type(fido).speak(fido, 5) #4

Review Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

—speak{fidoe;—5) =
' fido.speak(5) # 2

Dog.speak(fido, 5) #3 > which one is NOT an example
type(fido).speak(fido, 5) #4 of type-based dispatch?

Review Classes

class Dog:

def 1init (dog, name, age):
print("created a dog")

dog.name = name
dog.age = age

def speak(dog, mult):
print (dog.name +

fido = Dog("Fido", 9)

-speak(fido;—5) H
' fido.speak(5) # 2
Deg-speak{fide, 5] H-3—
type(fido).speak(fido, 5) #4

"+ "bark!"*mult)

~ which one is NOT an example

of type-based dispatch?

Review Classes

class Dog:

def 1init (dog, name, age):
print("created a dog")

dog.name = name
dog.age = age

def speak(dog, mult):
print (dog.name +

fido = Dog("Fido", 9)

-speak(fido;—5) H
' fido.speak(5) # 2
Deg-speak{fide, 5] H-3—
type(fido).speak(fido, 5) #4

"+ "bark!"*mult)

= which call style is preferred?

Review Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5) preferred style

Review Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name

dog.age =Aage/ what will be passed to the dog param?

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5)

Review Classes

what is a better name for
the receiver parameter?

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5)

Review Classes

what is a better name for
the receiver parameter?

class Dog: answer: self
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5)

Special Methods

Special Methods

__init___1s a special method,
with non-standard behavior
class Dog:

def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5)

Special Methods

There are MANY special method names:

https://docs.python.org/3/reference/datamodel.htmli#special-method-names

We'll learn a few:

str , repr , repr html

_eq , _ 1t

len , getitem

__enter , exit

control how an object looks when
we print it or see it in Out[N]

generate HTML to create more
visual representations of objects in
Jupyter. Like tables for DataFrames

https://docs.python.org/3/reference/datamodel.html#special-method-names

Special Methods

There are MANY special method names:
https://docs.python.org/3/reference/datamodel.htmli#special-method-names

We'll learn a few:

str , repr , repr html

eq , 1t — define how == behaves for two
_— different objects

, define how a list of objects should
len , getitem be sorted

c = (a==b) # type of c?
__enter , exit

https://docs.python.org/3/reference/datamodel.html#special-method-names

Special Methods

There are MANY special method names:
https://docs.python.org/3/reference/datamodel.htmli#special-method-names

We'll learn a few:

str , repr , repr html

_eq , 1t

len , getitem }> build our own sequences that we
— I — index, slice, and loop over:

/\
: val = obj[idx] what goes
__enter_ , _ exit vals = obj[3:7] In brackets!

for x 1n obj:
print (x)

https://docs.python.org/3/reference/datamodel.html#special-method-names

Special Methods

There are MANY special method names:
https://docs.python.org/3/reference/datamodel.htmli#special-method-names

We'll learn a few:

_str , repr , repr html
eq, 1t
len , getitem

context managers

with open("file.txt") as f:

enter , exit
___ I — data = f.read()

automatically close

https://docs.python.org/3/reference/datamodel.html#special-method-names

Demos

