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Review



Review Classes

CLASSES AND OTHER TYPES OBJECTS

person
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Review Classes

class Dog: which one is an attribute!
def init(dog): |. dog
print("created a dog") 2. name
dog.name = name 3. mult
dog.age = age 4. fido

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog()
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Review Classes

class Dog:
def 1init (dog, name, age):
print("created a dog")
dog.name = name

dog.age =Aage/ what will be passed to the dog param?

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5)
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Review Classes

what is a better name for
the receiver parameter?

class Dog: answer: self
def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5)
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Special Methods

__init___1s a special method,
with non-standard behavior
class Dog:

def 1init (dog, name, age):
print("created a dog")
dog.name = name
dog.age = age

def speak(dog, mult):
print(dog.name + ": " + "bark!"*mult)

fido = Dog("Fido", 9)

fido.speak(5)



Special Methods

There are MANY special method names:

https://docs.python.org/3/reference/datamodel.htmli#special-method-names

We'll learn a few:

str , repr , repr html

_eq , _ 1t

len , getitem

__enter , exit

control how an object looks when
we print it or see it in Out[N]

generate HTML to create more
visual representations of objects in
Jupyter. Like tables for DataFrames
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Special Methods

There are MANY special method names:
https://docs.python.org/3/reference/datamodel.htmli#special-method-names

We'll learn a few:

str , repr , repr html

eq , 1t — define how == behaves for two
_— different objects

, define how a list of objects should
len , getitem be sorted

c = (a==b) # type of c?
__enter , exit
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Special Methods

There are MANY special method names:
https://docs.python.org/3/reference/datamodel.htmli#special-method-names

We'll learn a few:

str , repr , repr html

_eq , 1t

len , getitem }> build our own sequences that we
— I — index, slice, and loop over:

/\
: val = obj[idx] what goes
__enter_ , _ exit vals = obj[3:7] In brackets!

for x 1n obj:
print (x)
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Special Methods

There are MANY special method names:
https://docs.python.org/3/reference/datamodel.htmli#special-method-names

We'll learn a few:

_str , repr , repr html
_eq_, 1t
len , getitem

context managers

with open("file.txt") as f:

enter , exit
___ I — data = f.read()

# automatically close


https://docs.python.org/3/reference/datamodel.html#special-method-names

Demos



