Worksheet: OOP and Recursion

1

1. the parent class of Dog is Pet. Does Pet have a parent type? If so, what is it?
2. how many arguments does line C pass?
3. how many arguments does line B pass?
4. on another paper, draw what the frames and object(s) will look like after line A. (check with PythonTutor)
```
def fact(n):
    if n == 0:
        return 1
    return n * fact(n-1)
# what is fact(5)
```

```
class Pet:
    def __init__(self, name):
        self.name = name # A
class Dog(Pet):
    def __init__(self, name, age):
        self.age = age
        Pet.__init__(self, name) # B
pup = Dog("Sam", 1) # C
```

```
def fib(n):
```

def fib(n):
if n < 2:
if n < 2:
return n
return n
return fib(n-1) + fib(n-2)
return fib(n-1) + fib(n-2)

what is fib(6)?

```
# what is fib(6)?
```

```
def g(n):
    if n < 9:
        g(n + 1)
    print(n)
```

\# what does $g(7)$ print?

```
def M(n):
    print(n)
    if n > 1:
        M(n-1)
        print(n)
    # what does M(3) print?
```

```
B = [ ]
def h(A):
    if len(A) > 0:
        h(A[1:])
        B.append(A[0])
h([2, 5, 6, 3])
# what is in B?
```

class Node:
def __init__(self, val):
self.val = val
self.next = None
def tot(self):
if self.next == None:
return self.val
return self.val + self.next.tot()
def __getitem__(self, idx):
if ids == 0:
return self.val
return self.next[idx-1]
A $=$ Node (3)
B $=$ Node (5)
C = Node (7)
A. next $=\mathrm{B}$
B. next $=$ C

I. finish the PythonTutor picture on the right
2. what is C. tot()? B. tot()? A. tot()?
3. what is $\mathrm{A}[0]$? $\mathrm{A}[2]$?
4. what kind of error does $\mathbf{A}[-1]$ produce?
5. how would the PythonTutor change if we added C. next = A?
6. what would C [3] be, given above change?
7. what would A. tot () do, give above change?

