
[320] Web 3: Flask
Tyler Caraza-Harter

Getting Requests Through

computer 1
(laptop) computer 2

(Virtual Machine)

IP address: 18.216.110.65

Python

pr
oc

es
se

s

request for data to 18.216.110.65

Scenario: we want to access Jupyter on our virtual machine from our laptop

[like street address]

Getting Requests Through

computer 1
(laptop) computer 2

(Virtual Machine)

IP address: 18.216.110.65

Python

pr
oc

es
se

s request for data to 

18.216.110.65
:2020

[ports are like
apartment numbers]

Scenario: we want to access Jupyter on our virtual machine from our laptop

[like street address]

Getting Requests Through

computer 1
(laptop) computer 2

(Virtual Machine)

IP address: 18.216.110.65

Python

pr
oc

es
se

s

SSH

18.216.110
.65:2020

port 2218.216.11
0.65:22

Issue 1: firewall may be blocking some ports (we disabled this in lab)

Getting Requests Through

computer 1
(laptop) computer 2

(Virtual Machine)

IP address: 18.216.110.65

Python

pr
oc

es
se

s

SSH

18.216.110
.65:2020

port 2218.216.11
0.65:22

Issue 2: there might not be any process listening on port 2020

Getting Requests Through

computer 1
(laptop) computer 2

(Virtual Machine)

IP address: 18.216.110.65

Python

pr
oc

es
se

s

SSH

18.216.110
.65:2020

port 2218.216.11
0.65:22

Issue 3: the process may only be listening for local (not external) requests

Start command: python3 -m notebook --no-browser --ip=127.0.0.1 --port=2020

Jupyter
port 2020

[127.0.0.1 means "localhost", the default]

Getting Requests Through

computer 1
(laptop) computer 2

(Virtual Machine)

IP address: 18.216.110.65

Python

pr
oc

es
se

s

SSH

18.216.110
.65:2020

port 2218.216.11
0.65:22

Success: Jupyter is listening for all 2020 requests, and the firewall isn't blocking them!

Start command: python3 -m notebook --no-browser --ip=0.0.0.0 --port=2020

Jupyter
port 2020

[0.0.0.0 means all IP addresses]

Getting Requests Through

computer 1
(laptop) computer 2

(Virtual Machine)

IP address: 18.216.110.65

Python

pr
oc

es
se

s

SSH

18.216.110
.65:2020

port 2218.216.11
0.65:22

Demo: start web server with http.server

Start command: python3 -m notebook --no-browser --ip=0.0.0.0 --port=2020

Jupyter
port 2020

http.server
port 80

18.216.110.65:80

mkdir -p demo

cd demo

echo "Hello world!" > index.html

sudo python3 -m http.server --bind=0.0.0.0 80

Getting Requests Through

computer 1
(laptop) computer 2

(Virtual Machine)

IP address: 18.216.110.65

Python

pr
oc

es
se

s

SSH

18.216.110
.65:2020

port 2218.216.11
0.65:22

Your Goal: build a web application for P4

Start command: python3 -m notebook --no-browser --ip=0.0.0.0 --port=2020

Jupyter
port 2020

P4
port 500018.216.110.65:5000

DNS (Domain Name Service)

computer 2
(Virtual Machine)

IP address: 18.216.110.65

Python Server

IP address: 8.8.8.8

{
 "example.com": "18.216.110.64",
 ...
}

go to: example.com

(1) lookup
example.com

(2) it's at 18.216.110.64

(3) send request to 18.216.110.64

paying to register domain name is ~$10-15 / year

HTTPS: Hypertext Transfer Protocol Secure

computer 2
(Virtual Machine)

IP address: 18.216.110.65

Python Server

go to: example.com

Wireshark

snoop

HTTP traffic

HTTPS: Hypertext Transfer Protocol Secure

computer 2
(Virtual Machine)

IP address: 18.216.110.65

Python Server

go to: example.com

Wireshark

cannot read
encrypted traffic

HTTPS traffic

paying to register SSL certificate for encryption name is ~$5-10 / year
(or free: https://letsencrypt.org/)

https://letsencrypt.org/

Pages vs. Files

Static Pages Correspond to Files

computer 2
(Virtual Machine)

IP address: 18.216.110.65

Python Server
18.216.110.65:80/pageA.html

def get_page(resource):

 with open(resource, "rb") as f:

 return f.read()

Python Server Code (approximate)

read

Static Pages Correspond to Files

computer 2
(Virtual Machine)

IP address: 18.216.110.65

Python Server
18.216.110.65:80/logo.png

def get_page(resource):

 with open(resource, "rb") as f:

 return f.read()

Python Server Code (approximate)

read

Static Pages Correspond to Files

computer 2
(Virtual Machine)

IP address: 18.216.110.65

Python Server
18.216.110.65:80/

def get_page(resource):

 if resource == "/":

 resource = "index.html"

 with open(resource, "rb") as f:

 return f.read()

Python Server Code (approximate)

read

Dynamic Pages Generated by Code

computer 2
(Virtual Machine)

IP address: 18.216.110.65

Python Server
18.216.110.65:80/ha.html

def get_page(resource):

 if resource == "/ha.html":

 return "Ha!" * 100

 with open(resource, "rb") as f:

 return f.read()

Python Server Code (approximate)

ha.html is dynamic
others are static

Templating: Add Dynamic Content to File

computer 2
(Virtual Machine)

IP address: 18.216.110.65

Python Server
18.216.110.65:80/pageA.html

def get_page(resource):

 with open(resource, "rb") as f:

 s = f.read()

 if resource = "/pageA.html":

 s = s.format(date.today())

 return s

Python Server Code (approximate)

<html>
<body>Hi, today is {}.</body>
</html>

read
<html>
<body>Hi, today is 2020-02-27.</body>
</html>

Multi-File Pages

Page Load, the Big Picture

computer 2
(Virtual Machine)

IP address: 18.216.110.65

computer 1
(laptop)

index.html, please [GET]

Page Load, the Big Picture

computer 2
(Virtual Machine)

IP address: 18.216.110.65

computer 1
(laptop)

index.html, please [GET]
<html>

<body>

Hello

<script src="B.js">

</script>

</body>

</html>

Page Load, the Big Picture

computer 2
(Virtual Machine)

IP address: 18.216.110.65

computer 1
(laptop)

index.html, please [GET]
<html>

<body>

Hello

<script src="B.js">

</script>

</body>

</html>

A.png, please [GET]
B.js please [GET]

Page Load, the Big Picture

computer 2
(Virtual Machine)

IP address: 18.216.110.65

computer 1
(laptop)

index.html, please [GET]
<html>

<body>

Hello

<script src="B.js">

</script>

</body>

</html>

A.png, please [GET]
B.js please [GET]

Page Load, the Big Picture

computer 2
(Virtual Machine)

IP address: 18.216.110.65

computer 1
(laptop)

index.html, please [GET]

A.png, please [GET]
B.js please [GET]Hello

JavaScript (B.js)

Page Load, the Big Picture

computer 2
(Virtual Machine)

IP address: 18.216.110.65

computer 1
(laptop)

index.html, please [GET]

A.png, please [GET]
B.js please [GET]Hello

JavaScript (B.js) data.json please [GET]

Page Load, the Big Picture

computer 2
(Virtual Machine)

IP address: 18.216.110.65

computer 1
(laptop)

index.html, please [GET]

A.png, please [GET]
B.js please [GET]Hello

JavaScript (B.js) data.json please [GET]

Page Load, the Big Picture

computer 2
(Virtual Machine)

IP address: 18.216.110.65

computer 1
(laptop)

index.html, please [GET]

A.png, please [GET]
B.js please [GET]Hello

JavaScript (B.js) data.json please [GET]

It's hard to scrape this kind of table: requests.get("index.html") wouldn't work...

Page Load, the Big Picture

computer 2
(Virtual Machine)

IP address: 18.216.110.65

computer 1
(laptop)

index.html, please [GET]

A.png, please [GET]
B.js please [GET]Hello

JavaScript (B.js) data.json please [GET]

It's hard to scrape this kind of table: requests.get("index.html") wouldn't work...

here's some data [POST]

Summary: Key Web Concepts

IP address: identifier for a computer (or network card on computer)

port number: identifier used to route to specific process on computer

firewall: software to block certain requests, often for certain ports

listening: process is ready to receive requests from an IP/port

DNS: service for converting domains to IP addresses

HTTPS: encrypted HTTP traffic so others can't watch traffic on WIFI, etc

static pages: pages that correspond to files on the server

dynamic pages: pages generated on-the-fly by some Python code

templating: insert dynamic content into certain places in a file

HTTP GET: request to download data

HTTP POST: request to upload data

Web Frameworks

Python Web Frameworks (and other packages)

https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf

we'll use Flask
for CS 320 because

it is simpler than Django

Python web frameworks like Flask and Django make it easy to write functions for each
webpage that can return a string with the contents.

https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf

Flask Example
Example Flask application (P4 approximate starter code)
https://github.com/cs320-wisc/f21/tree/main/p4

demo!
decorator

https://github.com/cs320-wisc/f21/tree/main/p4

Decorators

Decorators: take a function, return a function

@name before a function "decorates" a function

Useful for (a) making lists of certain types of functions, or (b) modifying functions

Example from Course Website

Example: Test Caller

Example: Invocation Counter

