1 320] Parallelism

Tyler Caraza-Harter

Parallelism: doing multiple things at once

Other Terms Today: thread, process, instruction pointer,
state (running, ready, blocked), CPU, GPU, core

Outline:
e Mental Model
* Two problems
 Parallelism: Thread, Process, GPU

Mental Moc

el: Tasks anc

Cores

One Python Program Running

Code Data
nums = [] Frames Objects
even_total = 0
~ for 1 in range(10): Global frame list
i.f i % 2 == : ./-"’\) 0 1
5 even_total += 1 nums 1|3
else: even_total 6
nums .append(1) i |5
print(i) p

what Is currently being done

Code Data

instruction pointer
(also called "program counter”)

process

Code Data

instruction pointer belongs to a thread within the process

process 1 (P)

Code

Data

process 2 (Q)

Code

Data

Core Core
(CPU) (CPU)

Multi-Core Processor (CPU)

process 3 (R)

Code

Data

process 4 (P)

Code

Data

>

process 1 (P) process 2 (Q) process 3 (R) process 4 (P)

Code Data Code Data Code Data Code Data
\ \
Core Core Running: 1, 2
(@8) (@8) Ready: 3, 4

Multi-Core Processor (CPU)

process 1 (P) process 2 (Q) process 3 (R) process 4 (P)

Code Data Code Data Code Data Code Data

\

\
Core
(CPU)

Core Running: 1, 2
(CPU) Ready: 3, 4

Multi-Core Processor (CPU)

process 1 (P) process 2 (Q) process 3 (R) process 4 (P)

Code Data Code Data Code Data Code Data

\
Core
(CPU)

Core Running: 1, 3
(CPU) Ready: 2, 4

Multi-Core Processor (CPU)

process 1 (P) process 2 (Q) process 3 (R) process 4 (P)

Code Data Code Data Code Data Code Data

\ the more cores we have, the more
\
Core
(CPU)

tasks we can run simultaneously

Core Running: 1, 3
(CPU) Ready: 2, 4

Multi-Core Processor (CPU)

Wasted Compute Resources:

Two Problems

Problem |: not enough distinct tasks to utilize all cores

process 1 (P)

Code Data

wasted!

\

Core Running: 1
(CPU) Ready:

Core

(CPU)

Multi-Core Processor (CPU)

Problem 2; some operations requires waiting (task is "blocked")

process 1

(P)

Code Data

operation may require us to wait
on an external resource

* fread()

* requests.get(URL)

wasted!

\

T time.sleep(SECONDS)

wasted!

\

Core

(CPU)

Core

(CPU)

Multi-Core Processor (CPU)

Running:
Ready:
Blocked:

1

Solution: Parallelism

very complicated, not

thread-level parallelism | |
P covered In detall

process-level parallelism

covered in CS 320
GPU parallelism

(1) Thread-level Parallelism

process
Code Data Threads give us multiple instruction pointers
#m In a process, allowing us to execute multiple
B - parts of the code, at the same time!

Core Core

(CPU) (CPU)

Multi-Core Processor (CPU)

(1) Thread-level Parallelism

process

Code Data In general, threads help:

* use multiple cores
* do useful work when threads are blocking

N _—

Core Core Running: 1, 2
(CPU) (CPU) Ready: 3, 4
Blocked:

Multi-Core Processor (CPU)

(1) Thread-level Parallelism

process

#Code Data In general, threads help:

* use multiple cores
— do useful work when threads are blocking

=

USRI

am

Core Core Running: 1, 3
(CPU) (CPU) Ready: 4
Blocked: 2

Multi-Core Processor (CPU)

(1) Thread-level Parallelism

process

#Code ata In seneral Python, threads help:

¢m * do useful work when threads are blocking
wasted!

/

Core
(CPU)

Core Running: 1
(CPU) Ready: 3, 4
Blocked: 2

Multi-Core Processor (CPU)

(1) Thread-level Parallelism

recommendation: don't use threads
unless you learn a LOT more about
multi-threading than covered in CS 320

process

Code Data

=

USRI

am

wasted!

/

/

Core

Core

(CPU) (CPU)

Multi-Core Processor (CPU)

Example: two countdown threads

import time
from threading import Thread

def f (name, n):

i
i

tl
t2
tl
t2
tl
t2

for 1 in range(n) :
print (name, n-1i)
time.sleep (1)

f("A", 3)
f("B", 5)

= Thread(target=f, args=("A",
= Thread (target=f, args=("B",
.start ()
.start ()
.Join ()
.join ()

Running: 1
Ready: 3, 4
Blocked: 2

o))

Solution: Parallelism

very complicated, not

thread-level parallelism | |
P covered In detall

process-level parallelism

covered in CS 320
GPU parallelism

(2) Process-level Parallelism

process 1 (Q)

Code Data

Core Core
(CPU) (CPU)

Multi-Core Processor (CPU)

process 1

Code

clones

(Q)

Data

(2) Process-level Parallelism

process 2 (Q)

Code

Data

process 3 (Q)

Code

Data

process 4 (Q)

Code

Data

AN
Core Core
(CPU) (CPU)

Multi-Core Processor (CPU)

process 1 (Q)

Code

Data

(2) Process-level Parallelism

process 2 (Q)

Code

Data

process 3 (Q)

Code

Data

process 4 (Q)

Code

Data

Core
(CPU)

Core
(CPU)

Multi-Core Processor (CPU)

(2) Process-level Parallelism

process 1 (Q) process 2 (Q)
Code Data Code Data

Core Core
(CPU) (CPU)

Multi-Core Processor (CPU)

process 3 (Q) process 4 (Q)

Code

Data Code

Data

process 1

Code

(Q)

Data

(2) Process-level Parallelism

process 2 (Q)

Code

Data

process 3 (Q)

Code

Data

process 4 (Q)

Code

Data

Core

(CPU)

Core
(CPU)

Multi-Core Processor (CPU)

(2) Process-level Parallelism

send data back

TN

process 1 (Q) process 2 (Q) process 3 (Q) process 4 (Q)
Code Data Code Data Code Data Code Data

\
Core Core
(CPU) (CPU)

Multi-Core Processor (CPU)

(2) Process-level Parallelism

process 1 (Q)

Code Data

\

Core Core

(CPU) (CPU)

Multi-Core Processor (CPU)

(2) Process-level Parallelism

https://docs.python.org/3/library/multiprocessing.html

process 1 (Q)

Code Data from multiprocessing import Pool
S def f(x):

return x*x

LESUDINRINIE . 1 . '
if name == ' malin__
with Pool(5) as p:
print(p.map(f, [1, 2, 3]))

more examples later...

\

Core Core

(CPU) (CPU)

Multi-Core Processor (CPU)

https://docs.python.org/3/library/multiprocessing.html

Solution: Parallelism

very complicated, not

thread-level parallelism | |
P covered In detall

process-level parallelism

covered in CS 320
GPU parallelism

(3) GPU Parallelism

few cores that are fast, many cores that are slow,
flexible, ndependent float-optimized, coordinated

https://en.wikipedia.org/wiki/Nvidia_Tesla

process 1 (Q)

GPU Limitations

limatation |: need to move data back and forth to GPU

Code Data

—

PPD PP

limatation 2: execution of

most cores in lock step

Code

GPU Data

process 1 (Q)

GPU Limitations

limatation |: need to move data back and forth to GPU

Code Data

—

=

limatation 2: execution of

most cores in lock step

Code

GPU Data

GPU Limitations

limatation |: need to move data back and forth to GPU

process 1 (Q)

Code Data o Code GPU Data

= =

imatation 2: execution of
most cores in lock step

on CPU
[rowl | [outputl | . .
great use case: oD x output? multiply row | of matrix by vector,
matrix multiplication IRd multiply row 2 of matrix by vector,
rowN | V%0 | ourpurN | multiply row 3 of matrix by vector,

GPU vs. CPU: Cost Comparison

Intel® Core™ i7-6900K NVIDIA GeForce®

D Processor Extreme Ed. GTX™ 1080 Ti
Machine Base Clock Frequency 3.2 GHz < |.5 GHz
Learning Cores 8 3584

Memory Bandwidth 64 GB/s 484 GB/s

Floating-Point Calculations 409 GFLOPS 11300 GFLOPS
Svamavin - Packb Cost ~ $1000.00 ~ $700.00

https://sebastianraschka.com/books.html

The GPU is 30% cheaper but 28x faster at floating-point operations!

https://sebastianraschka.com/books.html

Py lorch

import numpy as np

import torch

= np.random.normal(size=(1000,20))

= np.random.normal(size=(20,1))

= torch.from numpy(A).to("cuda") # GPU
= torch.from numpy(x).to("cuda") # GPU
= A @ x

b.to("cpu")

O O 0O X P X P

* CUDA: Compute Unified Device Architecture
* pytorch tensor is like numpy array

* to("cuda") moves data to GPU

* to("cpu") moves output back to CPU

more
examples
ater..

Parallelism

‘ thread-level parallelism
a process-level parallelism
a GPU parallelism

