
[320] Parallelism
Tyler Caraza-Harter

Parallelism: doing multiple things at once

thread, process, instruction pointer,
state (running, ready, blocked), CPU, GPU, core

Other Terms Today:

Outline:
• Mental Model
• Two problems
• Parallelism: Thread, Process, GPU

Mental Model: Tasks and Cores

Code Data

what is currently being done

One Python Program Running

Code Data

instruction pointer
(also called "program counter")

process

Code Data

instruction pointer belongs to a thread within the process

Code Data
process 1 (P)

Code Data
process 2 (Q)

Code Data
process 3 (R)

Code Data
process 4 (P)

CPU

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

Code Data
process 1 (P)

Code Data
process 2 (Q)

Code Data
process 3 (R)

Code Data
process 4 (P)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

Running: 1, 2
Ready: 3, 4

Code Data
process 1 (P)

Code Data
process 2 (Q)

Code Data
process 3 (R)

Code Data
process 4 (P)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

Running: 1, 2
Ready: 3, 4

Code Data
process 1 (P)

Code Data
process 2 (Q)

Code Data
process 3 (R)

Code Data
process 4 (P)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

Running: 1, 3
Ready: 2, 4

Code Data
process 1 (P)

Code Data
process 2 (Q)

Code Data
process 3 (R)

Code Data
process 4 (P)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

Running: 1, 3
Ready: 2, 4

the more cores we have, the more
tasks we can run simultaneously

Wasted Compute Resources:
Two Problems

Code Data
process 1 (P)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

Running: 1
Ready:

wasted!

Problem 1: not enough distinct tasks to utilize all cores

Code Data
process 1 (P)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

Running:
Ready:
Blocked: 1

wasted!

Problem 2: some operations requires waiting (task is "blocked")

wasted!

operation may require us to wait
on an external resource

• f.read()
• requests.get(URL)
• time.sleep(SECONDS)

Solution: Parallelism
1 thread-level parallelism

2 process-level parallelism

3 GPU parallelism
covered in CS 320

very complicated, not
covered in detail

Code Data
process

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

(1) Thread-level Parallelism

1

2

3

Threads give us multiple instruction pointers
in a process, allowing us to execute multiple

parts of the code, at the same time!

Code Data
process

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

Running: 1, 2
Ready: 3, 4
Blocked:

(1) Thread-level Parallelism

1

2

3

In general, threads help:
• use multiple cores
• do useful work when threads are blocking

Code Data
process

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

Running: 1, 3
Ready: 4
Blocked: 2

(1) Thread-level Parallelism

1

2

3

In general, threads help:
• use multiple cores
• do useful work when threads are blocking

Code Data
process

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

Running: 1
Ready: 3, 4
Blocked: 2

(1) Thread-level Parallelism

1

2

3

In general Python, threads help:
• use multiple cores
• do useful work when threads are blocking

wasted!

Code Data
process

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

Running: 1
Ready: 3, 4
Blocked: 2

(1) Thread-level Parallelism

1

2

3

wasted!

Example: two countdown threads

import time
from threading import Thread

def f(name, n):
 for i in range(n):
 print(name, n-i)
 time.sleep(1)

f("A", 3)
f("B", 5)

t1 = Thread(target=f, args=("A", 3))
t2 = Thread(target=f, args=("B", 5))
t1.start()
t2.start()
t1.join()
t2.join()

recommendation: don't use threads
unless you learn a LOT more about

multi-threading than covered in CS 320

Solution: Parallelism
1 thread-level parallelism

2 process-level parallelism

3 GPU parallelism
covered in CS 320

very complicated, not
covered in detail

Code Data
process 1 (Q)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

(2) Process-level Parallelism

Code Data
process 1 (Q)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

(2) Process-level Parallelism

Code Data
process 2 (Q)

Code Data
process 3 (Q)

Code Data
process 4 (Q)

clones

Code Data
process 1 (Q)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

(2) Process-level Parallelism

Code Data
process 2 (Q)

Code Data
process 3 (Q)

Code Data
process 4 (Q)

Code Data
process 1 (Q)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

(2) Process-level Parallelism

Code Data
process 2 (Q)

Code Data
process 3 (Q)

Code Data
process 4 (Q)

Code Data
process 1 (Q)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

(2) Process-level Parallelism

Code Data
process 2 (Q)

Code Data
process 3 (Q)

Code Data
process 4 (Q)

Code Data
process 1 (Q)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

(2) Process-level Parallelism

Code Data
process 2 (Q)

Code Data
process 3 (Q)

Code Data
process 4 (Q)

send data back

Code Data
process 1 (Q)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

(2) Process-level Parallelism

Code Data
process 1 (Q)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

(2) Process-level Parallelism

https://docs.python.org/3/library/multiprocessing.html

more examples later...

https://docs.python.org/3/library/multiprocessing.html

Solution: Parallelism
1 thread-level parallelism

2 process-level parallelism

3 GPU parallelism
covered in CS 320

very complicated, not
covered in detail

(3) GPU Parallelism

CPU

https://en.wikipedia.org/wiki/Nvidia_Tesla

few cores that are fast,
flexible, independent

...

...

...

...

many cores that are slow,
float-optimized, coordinated

https://en.wikipedia.org/wiki/Nvidia_Tesla

GPU Limitations

Code GPU DataCode Data
process 1 (Q)

on CPU

limatation 1: need to move data back and forth to GPU

limatation 2: execution of
most cores in lock step

GPU Limitations

Code GPU DataCode Data
process 1 (Q)

on CPU

limatation 1: need to move data back and forth to GPU

limatation 2: execution of
most cores in lock step

GPU Limitations

Code GPU DataCode Data
process 1 (Q)

on CPU

limatation 1: need to move data back and forth to GPU

limatation 2: execution of
most cores in lock step

great use case:
matrix multiplication

multiply row 1 of matrix by vector,
multiply row 2 of matrix by vector,
multiply row 3 of matrix by vector,
...

GPU vs. CPU: Cost Comparison

https://sebastianraschka.com/books.html

The GPU is 30% cheaper but 28x faster at floating-point operations!

https://sebastianraschka.com/books.html

PyTorch

• CUDA: Compute Unified Device Architecture
• pytorch tensor is like numpy array
• .to("cuda") moves data to GPU
• .to("cpu") moves output back to CPU

more
examples

later...

Parallelism
1 thread-level parallelism

2 process-level parallelism

3 GPU parallelism

