
[368] C++ Programming:
Welcome!
Tyler Caraza-Harter

Outline
Welcome

Logistics

Background and Motivation
• Why C/C++: performance
• Why C++ (over C): language features

Demos

Introductions

Tyler Caraza-Harter
• Long time Badger
• Email: tharter@wisc.edu
• Just call me “Tyler” (he/him)

Industry experience
• Worked at Microsoft* on SQL Server and Cloud
• Other internships/collaborations:

Qualcomm, Google, Facebook*, Tintri*, Bauplan*

Open source
• OpenLambda (serverless cloud platform)
• https://github.com/open-lambda/open-lambda

*used C++

mailto:tharter@wisc.edu
https://github.com/open-lambda/open-lambda

Who are You?

Year in school? Major?

What CS courses have people taken before?
• 300? 320? 354?

Please fill this form (due today):
https://forms.gle/3BaLREB1upurZDky6

Why?
• Help me get to know you
• Let me know your GitHub username (create an account if

necessary) so I can grade your GitHub classroom submissions.

https://forms.gle/3BaLREB1upurZDky6

What will you learn in this 368?

Learning objectives

• Read and understand C++ code

• Write C++ programs making use of the abstractions provided by the
language

• Understand the lower level details of memory management like pointers
and references

• Organize and build multi-file projects using the make tool

• Solve real world programming problems using C++ as a tool

What will you learn today?

Learning objectives

• recall course logistics and policies

• describe reasons for using a language like C/C++

• describe reasons for using C++ over C

Outline
Welcome

Logistics

Background and Motivation
• Why C/C++: performance
• Why C++ (over C): language features

Demos

Main Websites

https://tyler.caraza-harter.com/cs368/s24/schedule.html
• schedule, course content, how to get help
• links to all other resources/tools
• some lecture recordings (review only)

https://github.com/cs368-wisc/s24
• project specifications
• lecture demo code

Canvas
• announcements
• quizzes
• grade summaries

1

2

3

https://tyler.caraza-harter.com/cs368/s24/schedule.html
https://github.com/cs368-wisc/s24

TopHat (me asking you questions during lecture)
• can earn points from this

Piazza (asking questions of general interest)
• goal: responses <1 business day
• don't post >5 lines of project code

Email (asking questions of individual interest)
• goal: responses <2 business days
• please keep related issues on the same thread

GitHub classroom
• you'll be given a private repo for your project

Anki Flash Cards
• memory terms, basic ideas using flash cards and spaced repetition

4

5

6

7

8

Other Tools

Lecture

Wednesday:
• in person (usually recorded too, barring technical difficulties)
• focus on concepts (lecture, worksheets, etc)
• TopHats

Friday:
• posted online, multiple short videos
• focus on programming demos
• watch before next in-person class!

A Few Books (Optional Supplement)
There is no assigned text (will cover everything needed in lecture). But here
are a few books to consider if you want to supplement:

Note: the entire O'Reilly
collection is free online

through the Madison Public
Library using a library card

(also free)

Bonus Resource:
https://

www.youtube.com/
playlist?

list=PLlrATfBNZ98dudn
M48yfGUldqGD0S4FFb

Good C++ YouTube
series by "The Cherno" if

you want to explore
other topics beyond this

term.

https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb
https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb
https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb
https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb
https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb

Sparrow Project
Project:

• one big project with six project stages (P1 - P6)
• project name: Sparrow (simple prototype of Arrow)
• Arrow project (https://arrow.apache.org/) enables fast in-memory analytics on

tables of data; the main implementation is in C++

Collaboration:
• done individually
• can help each other debug (with citation)
• sharing code is NOT allowed

Submission:
• you will push your code to a GitHub classroom repo (keep it private!)
• submit a form when a specific version (commit number) is ready for grading

Grading:
• autograded using tests I'll release
• I might manually modify grades if anybody tries to "game the tests"

https://arrow.apache.org/

Grading

This course is credit/no credit:
• so pass/fail, no letter grades
• to pass, you need to earn >=100 points
• there will be >150 points possible to earn, so there are many possible

ways to pass
• 100 is a low bar ; 140+ would be a score to really "feel good" about

Scoring:
• projects: 120 points possible (4 per passed test)
• quizzes: 30 points possible (1 per correct answer)
• TopHat: 1 point for correct answer, 0.5 for incorrect
• other: I might offer other opportunities for points as we go

Outline
Welcome

Logistics

Background and Motivation
• Why C/C++: performance

• how code runs
• cachelines
• garbage collection
• safety checks

• Why C++ (over C): language features

Demos

these instructions are in "machine code"
that the CPU can understand

Code Data
process 1 (P)

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

https://pages.cs.wisc.edu/~deppeler/cs354/reference/x86-cheat-sheet.pdf

these instructions are
represented as 1's and 0's

the CPU understands

Background: How to Code Runs on CPUs

how do we bridge the gap between "high level"
code (C++/Python/Java/etc) and machine code?

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

high level code

compiler

approach 1: compiler translates from
high level code to machine code

programmer

Machine Code Data

Machine Code Data

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

high level code

interpreter
approach 2: CPU runs an interpeter

program that loops over
programmer's code and runs it

programmer

Machine Code Data

Multi-Core Processor (CPU)

Core
(CPU)

Core
(CPU)

high level code

virt mach

approach 3: compiler creates
"bytecode" from high level code
and a "virtual machine" running
on the CPU runs the bytecode

programmer

compiler

bytecode

Machine Code Data

Python Code

PVM

compiler

bytecode
(.pyc files)

when you run "python3 ..."
bytecode generation happens
automatically before Python

Virtual Machine runs it

Machine Code Data

Java Code

JVM

Java compiler

bytecode
(.class files)

javac mycode.java

java mycode

JVM bytecode is "closer"
to machine code

C/C++ Performance
Advantage 1: compiled languages are usually faster at runtime

• no overhead due to interpreter or language virtual machine
• however, cannot dynamically profile+optimize

Outline
Welcome

Logistics

Background and Motivation
• Why C/C++: performance

• how code runs
• cachelines
• garbage collection
• safety checks

• Why C++ (over C): language features

Demos

Background: CPU and RAM

CPU RAM

3r1:
4r2:

r3: 0

registers are
like variables

built into the CPU

CPU clock has
billions of cycles

per second

Background: CPU and RAM

CPU RAM

3r1:
4r2:

r3: 7

instruction:
r3 = r1 + r2

(fast)

Load and Store

CPU RAM

3r1:
4r2:

r3: 7

6

2

0

challenge: if we want to add some
numbers stored in RAM, we need to
load before adding and store after

Latency

CPU RAM

6r1:
4r2:

r3: 7

6

2

0

source: visuals, estimates

about 60ns, or 200 cycles

very slow, but not long enough to
switch to a different process...

Cache

CPU
RAM6r1:

4r2:
r3: 7

6

2

0

What happens:
• the value needed (for example, a 4-byte integer) goes to the register
• a whole cacheline (often 64 bytes) containing the value goes to the cache
• future accesses to values in same cacheline will be relatively fast!

Cache
copies of "hot" data

What matters for performance:
• how many cache misses there are (that is, how many times we need

data that is not in the cache)
• how many values we access is less important

Example 1: Step and Multiply

Gallery of Processor Cache Effects
http://igoro.com/archive/gallery-of-processor-cache-effects/

for (int i = 0; i < arr.Length; i += K) arr[i] *= 3;

as K gets bigger, we do fewer
multiplications. But does it matter?

http://igoro.com/archive/gallery-of-processor-cache-effects/

Example 1: Step and Multiply

int ...

int ...

k=1 loop: all the ints, all the cachelines

k=2 loop: half the ints, all the cachelines

performance tip: think about
how many cachelines you're
touching, not just about how

many values

Example 2: Series of Strings

0 N

stack"A" next ..."BC" next"D" next

linked list

0 N

stack...

array of references to strings

"A" "D" "BC"

0 N

stack..."A" "BC"

array of inline strings

which layout is most cache friendly?

"D"

C/C++ Performance
Advantage 1: compiled languages are usually faster at runtime

• no overhead due to interpreter or language virtual machine
• cannot dynamically profile+optimize

Advantage 2: C/C++ gives us more control over memory layout
• can design cache-friendly data structures

Outline
Welcome

Logistics

Background and Motivation
• Why C/C++: performance

• how code runs
• cachelines
• garbage collection
• safety checks

• Why C++ (over C): language features

Demos

Background: Memory Management

https://pythontutor.com/

https://pythontutor.com/

Background: Memory Management

Background: Memory Management

Background: Memory Management

• data that can no longer be accessed in any way is "garbage"
• we can release garbage to free up memory
• in simple cases, the garbage objects might be recognizable immediately
• in complicated cases (for example, circular references), a background garbage

collection algorithm needs to run to identify garbage
• garbage collection is costly and generally involves pausing execution (perhaps

for many seconds!)

garbage!

C/C++ Performance
Advantage 1: compiled languages are usually faster at runtime

• no overhead due to interpreter or language virtual machine
• cannot dynamically profile+optimize

Advantage 2: C/C++ gives us more control over memory layout
• can design cache-friendly data structures

Advantage 3: C/C++ lets us manage memory allocation/deallocation manually
• YOU (the programmer) write code to manually delete allocations
• memory is freed up sooner (don't need to wait for garbage collection)
• no overheads for GC; no long pauses during GC

Outline
Welcome

Logistics

Background and Motivation
• Why C/C++: performance

• how code runs
• cachelines
• garbage collection
• safety checks

• Why C++ (over C): language features

Demos

Background: Safety Checks

A = [5,6,7]
B = [8,9,1]

every process has an address space, which resembles a big
array of bytes (indexes are called addresses). All the

processes data lives somewhere in that address space.

0 N...bytes...mapped
range

unmapped
range

A process is a running program. Each process has an "address space"
that is basically a big array of bytes for all of its data. An "address" is an
index into the array. Some ranges of addresses are "mapped" (valid)

and others are unmapped.

Background: Safety Checks

A = [5,6,7]
B = [8,9,1]

0 N...bytes...mapped
range

unmapped
range

5 6 7 8 9 1

A[0] → 5

Background: Safety Checks

A = [5,6,7]
B = [8,9,1]

0 N...bytes...mapped
range

unmapped
range

5 6 7 8 9 1

A[2] → 7

Background: Safety Checks

A = [5,6,7]
B = [8,9,1]

0 N...bytes...mapped
range

unmapped
range

5 6 7 8 9 1

A[3] → IndexError: list index out of range

Many languages (Python, Java, etc) check bounds for
you and raise an exception if you're outside. This
checking has a performance cost, but is safer.

Bounds Checking

def print_at(items, idx):
 if 0 <= idx < len(items):
 print(items[idx])
 else:
 print("bad index")

Python checks that idx is in range, which is
wasteful because your code already did that!

C/C++ Approach

0 N...bytes...mapped
range

unmapped
range

5 6 7 8 9 1

A[2] → 7

Trust programmer to write code that checks bounds.

Generally don't spend time on double checking that!

When programmer makes a mistake, however, there
are a variety of strange things that could happen...

A

C/C++ Approach

0 N...bytes...mapped
range

unmapped
range

5 6 7 8 9 1

A[3] → ? (could be anything)

Trust programmer to write code that checks bounds.

Generally don't spend time on double checking that!

A

When programmer makes a mistake, however, there
are a variety of strange things that could happen...

C/C++ Approach

0 N...bytes...mapped
range

unmapped
range

5 6 7 8 0 1

A[6] = 0

Trust programmer to write code that checks bounds.

Generally don't spend time on double checking that!

clobbered wrong list/array!

A

When programmer makes a mistake, however, there
are a variety of strange things that could happen...

C/C++ Approach

0 N...bytes...mapped
range

unmapped
range

5 6 7 8 0 1

A[11] → segfault!

Trust programmer to write code that checks bounds.

Generally don't spend time on double checking that!

A

When programmer makes a mistake, however, there
are a variety of strange things that could happen...

C/C++ Performance
Advantage 1: compiled languages are usually faster at runtime

• no overhead due to interpreter or language virtual machine
• cannot dynamically profile+optimize

Advantage 2: C/C++ gives us more control over memory layout
• can design cache-friendly data structures

Advantage 3: C/C++ lets us manage memory allocation/deallocation manually
• YOU (the programmer) write code to manually delete allocations
• memory is freed up sooner (don't need to wait for garbage collection)
• no overheads for GC; no long pauses during GC

Advantage 4: C/C++ doesn't spend much compute time to catch programming mistakes
• avoids duplicated checking effort
• runs a little faster

C/C++ Performance
Advantage 1: compiled languages are usually faster at runtime

• no overhead due to interpreter or language virtual machine
• cannot dynamically profile+optimize

Advantage 2: C/C++ gives us more control over memory layout
• can design cache-friendly data structures

Advantage 3: C/C++ lets us manage memory allocation/deallocation manually
• YOU (the programmer) write code to manually delete allocations
• memory is freed up sooner (don't need to wait for garbage collection)
• no overheads for GC; no long pauses during GC

Advantage 4: C/C++ doesn't spend much compute time to catch programming mistakes
• avoids duplicated checking effort
• runs a little faster

Observation: almost all these performance features make programming
more difficult and introduce new kinds for bugs (leaks, segfaults, etc).

Note: there are many tools for calling from one language to another
(Python to C, Java to C++, etc).

Suggestion: if 80% of execution time is spent on 20% of your code,
consider writing the critical 20% in a fast language (like C++) and the
rest in an "easy" language (like Python)

Outline
Welcome

Logistics

Background and Motivation
• Why C/C++: performance
• Why C++ (over C): language features

Demos

A Few Language Features in C++ but not C
Function overloading

• multiple functions with the same name that accept different types
Type deduction

• use "auto" type (or other features) to let C++ decide what the time should be
• templating: don't need many different similar functions to handle different types

Alternatives to pointers
• references, smart pointers (for example, unique and shared)

OOP (Object Oriented Programming)
• classes, inheritance (multiple!), public/private/etc.

Resource management with RAII (Resource Acquisition is Initialization)
• use destructors to make sure resources are freed when necessary
• differentiate copy/move, manager ownership of objects over resources

Rich STL (Standard Library)
• containers, iterators, algorithms

Functional programming
• anonymous lambda functions
• many standard library functions that take function references

Outline
Welcome

Logistics

Background and Motivation
• Why C/C++: performance
• Why C++ (over C): language features

Demos

