' 368] C++ Programming:
VWelcome!

Tyler Caraza-Harter

Outline

Welcome
Logistics

Background and Motivation
 Why C/C++: performance
 Why C++ (over C): language features

Demos

Introductions

Tyler Caraza-Harter
e |ong time Badger
¢ Email: tharter@wisc.edu
o Just call me “Tyler” (he/him)

Industry experience
e Worked at Microsoft™ on SQL Server and Cloud
e Other internships/collaborations:
Qualcomm, Google, Facebook™, Tintri*, Bauplan™

*used C++

Open source
¢ OpenLambda (serverless cloud platform)
® https://github.com/open-lambda/open-lambda

Lambda

<+«— code store

<+— PyPI repo

Sandbox

destroy|_, *

—
notify

5 sandboxes

release request mem
mem v (blocking)

mem pool

cgroups

Linux isolation features

mailto:tharter@wisc.edu
https://github.com/open-lambda/open-lambda

Who are You!?

Year in school? Major?

What CS courses have people taken before!
e 3007 3207 354!

Please fill this form (due today):
https://forms.gle/3Bal REB | upurZDky6

Why!?
* Help me get to know you
* Let me know your GrtHub username (create an account if
necessary) so | can grade your GitHub classroom submissions.

https://forms.gle/3BaLREB1upurZDky6

What will you learn in this 368!

Learning objectives
® Read and understand C++ code

* Write C++ programs making use of the abstractions provided by the
language

e Understand the lower level detalls of memory management like pointers
and references

e Organize and builld multi-file projects using the make tool

® 5Solve real world programming problems using C++ as a tool

What will you learn today?

Learning objectives
® recall course
® describe reasons for using a language like

® describe reasons for using

Outline

Welcome
Logistics

Background and Motivation
 Why C/C++: performance
 Why C++ (over C): language features

Demos

Main VVebsites

0 https://tyler.caraza-hartercom/cs368/s24/schedule.htm|
* schedule, course content, how to get help
* links to all other resources/tools
* some lecture recordings (review only)

e https://github.com/cs368-wisc/s24

project specifications

e |ecture demo code

e Canvas
* announcements

* quizzes
* grade summaries

https://tyler.caraza-harter.com/cs368/s24/schedule.html
https://github.com/cs368-wisc/s24

Other Tools

Piazza (asking questions of)

e TopHat (me asking you questions during lecture)
* can earn points from this

* goal responses <| business day
* don't post >5 lines of project code

Emall (asking questions of)
* goal responses <2 business days
* please keep related issues on the same thread

GrtHub classroom
* you'll be given a private repo for your project

Anki Flash Cards
* memory terms, basic ideas using flash cards and spaced repetition

Lecture

VWednesday:
° (usually recorded too, barring technical difficulties)
* focus on concepts (lecture, worksheets, etc)
* TopHats
Friday:
- , multiple short videos

e focus on programming demos
* watch before next in-person class!

A Few Books (Optional Supplement)

There Is no assigned text (will cover everything needed in lecture). But here
are a few books to consider if you want to supplement:

A Tour of C++
Third Edition

Bjarne Stroustrup

George S. Tselikis

500+ difficulty-scaled solved
programming exercises

= —a LS

Effective
Modern C++

42 SPECIFIC WAYS TO IMPROVE YOUR USE OF C+#11 AND C++14

Scott Meyers

/,

Cr+ for Java
Programmers

Note: the entire O'Rellly

collection 1s free online

through the Madison Public
Library using a library card
(also free)

A Bestseller Since 1986 N
Completely Rewritten for the New C++11 Standard Y Y

‘h ‘ | i '?ﬁﬁi

Stanley B. Lippman
Josée Lajoie
Barbara E. Moo

Bonus Resource:

https://
www.youtube.com/

playlist?
list=PLIrATIBNZ98dudn
M48ytGUIdgGDOS4FFb
Good C++ YouTube
series by "The Cherno" if
you want to explore
other topics beyond this
term.

https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb
https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb
https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb
https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb
https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb

Sparrow Project

Project:
* one big project with six project stages (Pl - P6)
* project name: Sparrow (simple prototype of Arrow)
* Arrow project (https://arrow.apache.org/) enables fast in-memory analytics on
tables of data; the main implementation is in C++

Collaboration: APACHE
* done individually ARROW
* can help each other debug (with citation)

A cross-language development platform for in-memory analytics

O Star 13,152

Submission:
* you will push your code to a GrtHub classroom repo ()

* submit a form when a specific version (commit number) Is ready for grading

Grading:
* autograded using tests I'll release
* | might manually modify grades if anybody tries to "game the tests"

https://arrow.apache.org/

Grading

This course is credit/no credit:
* 50 pass/fall, no letter grades

* to pass, you need to earn >=100 points
* there will be >150 points possible to earn, so there are many possible

ways to pass
* 100 1s alow bar; 140+ would be a score to really "feel good" about

Scoring:
* projects: |20 points possible (4 per passed test)
* quizzes: 30 points possible (| per correct answer)
* JopHat: | point for correct answer; 0.5 for incorrect

* other:| might offer other opportunities for points as we go

Outline

Welcome
Logistics

Background and Motivation

* Why C/C++: performance
* how code runs
* cachelines

* garbage collection
* safety checks

 Why C++ (over C): language features

Demos

Background: How to Code Runs on CPUs

these instructions are in "machine code"
that the CPU can understand

https.//pages.cs.wisc.edu/~deppeler/cs354/reference/x86-cheat-sheet.pdf

arithmetic
process 1 (P) _two operand instruction
addl drc,dst dst = dst 4+ src
subl dqrc,dst dst = dst - src
CO € Data imull |src,dst dst = dst * src
sall drc,dst dst = dst << src (aka shll)
RSP ' | S: 1S ist = dst >> sr rith
these instructions are arl grc,dst dst = dst ¢ (arith)
omT— shrl grc,dst dst = dst >> src (logical)
1 1 i @ i @ — Q N ar
— represented as |'sand Q's || *ort qresdst dst = dst * sxe
andl drc,dst dst = dst & src
‘the CPU under‘s‘tands orl siyc,dst dst = dst src
one operand instructions
incl dst dst = dst + 1

decl dst dst = dst - 1

negl dst dst = =dst

notl dst dst = ~dst

arithmetic ops set CCs implicitly

cf=1 if carry out from msb
\ zf=1 if dst==0,

sf=1 if dst < 0 (signed)

of=1 if two's complement
(signed) under/overflow
Core Core S —————
(CPU) (CPU)

Multi-Core Processor (CPU)

how do we bridge the gap between "high level"
code (CH++/Python/Java/etc) and machine code!

— high level code <—

programmer

Machine Code/ Data

:

approach |: translates from
high level code to machine code

Core

(CPU)

Core
(CPU)

Multi-Core Processor (CPU)

high level code <—

programmer

Machine Code /Data

. approach 2: CPU runs an
Interpreter
\ program that loops over

programmer's code and runs it

\

Core Core

(CPU) (CPU)

Multi-Core Processor (CPU)

Machine Cod

high level code

/

bytecode /

\

Data

1

compiler

programmer

approach 3: compiler creates
from high level code

and a

running

on the CPU runs the bytecode

\

Core

(CPU)

Core

(CPU)

Multi-Core Processor (CPU)

when you run "python3 .."
bytecode generation happens
automatically before Python

Virtual Machine runs it Python Code

/

bytecode /
pyc fil
(prcfles o

compiler

il\/lachine Cod% Data

JVM bytecode is "closer” Java Code
to machine code ,
bytecode /
(.class files) <

\
Java compiler

Jjavac mycode.java

Machine Cod?{ Data

java mycode

C/C++ Performance

Advantage |: compiled languages are usually faster at runtime
* no overhead due to interpreter or language virtual machine
* however, cannot dynamically profile+optimize

Outline

Welcome
Logistics

Background and Motivation

* Why C/C++: performance
* how code runs
* cachelines

* garbage collection
* safety checks

 Why C++ (over C): language features

Demos

Background: CPU and RAM

CPU clock has
billions of cycles

: per second
registers are

like variables
built into the CPU

Background: CPU and RAM

Instruction:
r3=rl +r2
(fast)

Load and Store

challenge: if we want to add some
numbers stored in RAM, we need to
load before adding and store after

Latency

6

2

0

about 60ns, or 200 cycles
y LA
very slow, but not long enough to Svstems
switch to a different process.. Performance
Enterprise apdithe Gloud §
Brendan Gregs, 2
SRR
SRS T PE— £
L
©

source: visuals, estimates

Cache

copies of "hot" data

What happens:
* the value needed (for example, a 4-byte integer) goes to the register
* awhole (often 64 bytes) containing the value goes to the cache
* future accesses to values in same cacheline will be relatively fast!

What matters for performance:

* how many cache misses there are (that is, how many times we need
data that is not in the cache)

* how many values we access Is less important

as K gets bigger, we do fewer

Exa—mple I : SteP and MUItIPIY multiplications. But does it matter?

for (int i = 0; 1 < arr.Length; 1 += K) arr[i] *= 3;

Update Every K-th Int

K=16

Time (ms)

1 2 - 8 16 32 64 128 256 512 1024

K

Gallery of Processor Cache Effects
http://igoro.com/archive/gallery-of-processor-cache-effects/

http://igoro.com/archive/gallery-of-processor-cache-effects/

Example |:Step and Multiply

Update Every K-th Int

90 - K=16

performance tip: think about

how many cachelines you're

touching, not just about how
many values

Time (ms)

1 2 - 8 16 32 64 128 256 512 1024

k=1 loop: all the ints, all the cachelines

Int Int Int Int Int Int Int Int Int Int Int Int Int Int Int Int|int Int Int Int Int Int Int Int Int Int Int Int Int Int Int Int |.

k=2 loop: half the ints, all the cachelines

Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt

Example 2: Series of Strings

which layout i1s most cache friendly?

ez

"A" next "D" next "BC" next stack

0
linked list
TN\

||A|l IIDII IIBCII staCk

0
array of references to strings

llAll IIBCH IIDII StaCk

0

array of inline strings

C/C++ Performance

Advantage |: compiled languages are usually faster at runtime
* no overhead due to interpreter or language virtual machine
* cannot dynamically profile+optimize

Advantage 2: C/C++ gives us more control over memory layout
* can design cache-friendly data structures

Outline

Welcome
Logistics

Background and Motivation
* Why C/C++: performance
* how code runs
* cachelines

* garbage collection
* safety checks

 Why C++ (over C): language features

Demos

Background: Memory Management

https://pythontutor.com/

nums = [1,2,3] Frames Objects

- Ltems = nums Global frame list

nums = [4,5,6] >
1tems = None nums

1
2

2
3

0
1

https://pythontutor.com/

Background: Memory Management

nums = [1,2,3] Frames Objects
ltems = nums Global frame list

- hums = [4,5,60]
items = None nums :?)
items

Background: Memory Management

nums = [1,2,3] Frames Objects
Ltems = nums Global frame list
nums = [4,5,60] 0
=+ 4 items = None nums 1
items
line that has just executed list
== next line to execute 0
line that has just executed E

Background: Memory Management

* data that can no longer be accessed in any way Is "garbage”
* we can release garbage to free up memory
* In simple cases, the garbage objects might be recognizable immediately

* In complicated cases (for example, circular references), a background garbage
collection algorithm needs to run to identify garbage

* garbage collection is costly and generally involves pausing execution (perhaps
for many seconds!)

Frames Objects
nums = [1,2,3]

1tems = nums Global frame list
nums = [4,5,6] aums | e

garbage!

1tems = None _
& items

C/C++ Performance

Advantage |: compiled languages are usually faster at runtime
* no overhead due to interpreter or language virtual machine
* cannot dynamically profile+optimize

Advantage 2: C/C++ gives us more control over memory layout
* can design cache-friendly data structures

Advantage 3: C/C++ lets us manage memory allocation/deallocation manually
* YOU (the programmer) write code to manually delete allocations
* memory Is freed up sooner (don't need to walt for garbage collection)
* no overheads for GC; no long pauses during GC

Outline

Welcome
Logistics

Background and Motivation
* Why C/C++: performance

* how code runs

* cachelines

* garbage collection

* safety checks

 Why C++ (over C): language features

Demos

Background: Safety Checks

A= 1[5,6,7] every process has an address space, which resembles a big
B et array of bytes (indexes are called addresses). All the
B =1[8,39,1] processes data lives somewhere In that address space.
0 unmapped mapped ..bytes...
range range
A IS a running . Each process has an
that is basically a big array of bytes for all of its data. An S an
index into the array. Some ranges of addresses are (valid)

and others are unmapped.

Background: Safety Checks

A= [5,6,7]
B =18,9,1]
A[0] - 5
5|6|7 8(9]!
0 unmapped mapped ..bytes...

range range

Background: Safety Checks

A= [5,6,7]
B =18,9,1]
A[2] » 7
5|6|7 8(9]!
0 unmapped mapped ..bytes...

range range

Background: Safety Checks

A = 15,6,7]
B = [8,9,1]
A[3] -» IndexError: list index out of range
5(6(7
0 unmapped mapped ..bytes... N
range range

Many languages (Python, Java, etc) check bounds for
you and raise an exception if you're outside. This
checking has a performance cost, but Is safer.

Bounds Checking

def print at(items, idx):
1f 0 <= idx < len(items):
print(items[idx]) <«
else:
print("bad index")

C/C++ Approach

Trust programmer to write code that checks bounds.

Generally don't spend time on double checking that!

A[2] » 7
5|6|7 819]1
O unmapped A mapped ..bytes..
range range

When programmer makes a mistake, however, there
are a variety of strange things that could happen..

C/C++ Approach

Trust programmer to write code that checks bounds.

Generally don't spend time on double checking that!

A[3] » ? (could be anything)

l

5|6|7 81911
O unmapped A mapped ..bytes..
range range

When programmer makes a mistake, however, there
are a variety of strange things that could happen..

C/C++ Approach

Trust programmer to write code that checks bounds.

Generally don't spend time on double checking that!

A[6] = 0 clobbered wrong list/array!
516|7 810
0 unmapped A mapped ..bytes...
range range

When programmer makes a mistake, however, there
are a variety of strange things that could happen..

C/C++ Approach

Trust programmer to write code that checks bounds.

Generally don't spend time on double checking that!

A[1l1l] -» segfault!

l

516(7 810] |
0 unmapped A mapped ..bytes...
range range

When programmer makes a mistake, however, there
are a variety of strange things that could happen..

C/C++ Performance

Advantage |: compiled languages are usually faster at runtime
* no overhead due to interpreter or language virtual machine
* cannot dynamically profile+optimize

Advantage 2: C/C++ gives us more control over memory layout
* can design cache-friendly data structures

Advantage 3: C/C++ lets us manage memory allocation/deallocation manually
* YOU (the programmer) write code to manually delete allocations
* memory Is freed up sooner (don't need to walt for garbage collection)
* no overheads for GC; no long pauses during GC

Advantage 4: C/C++ doesn't spend much compute time to catch programming mistakes
* avoids duplicated checking effort
* runs a little faster

C/C++ Performance

Advantage |: compiled languages are usually faster at runtime
* no overhead due to interpreter or language virtual machine
* cannot dynamically profile+optimize

Advantage 2: C/C++ gives us more control over memory layout
* can design cache-friendly data structures

Advantage 3: C/C++ lets us manage memory allocation/deallocation manually

* YOU (the g Observation: almost all these performance features make programming
* memory is {more difficult and introduce new kinds for bugs (leaks, segfaults, etc).

* no overheat

Note: there are many tools for calling from one language to another
Advantage 4: C/C{(Python to C, Java to C++, etc).

* avolds dupli

* runs a little , L
Suggestion: if 80% of execution time is spent on 20% of your code,

consider writing the critical 20% In a fast language (like C++) and the
rest In an "easy" language (like Python)

Outline

Welcome
Logistics

Background and Motivation
 Why C/C++: performance
 Why C++ (over C): language features

Demos

A Few Language Features in C++ but not C

* multiple functions with the same name that accept different types

* use "auto” type (or other features) to let C++ decide what the time should be
e templating: don't need many different similar functions to handle different types

* references, smart pointers (for example, unique and shared)
* classes, iInheritance (multiple!), public/private/etc.

* use destructors to make sure resources are freed when necessary
« differentiate copy/move, manager ownership of objects over resources

* containers, iterators, algorithms

* anonymous lambda functions
* many standard library functions that take function references

Outline

Welcome
Logistics

Background and Motivation
 Why C/C++: performance
 Why C++ (over C): language features

Demos

