
[368] More Memory
Tyler Caraza-Harter

What will you learn today?

Learning objectives

• describe memory layout

• decide when to use stack or heap for a particular piece of data

• use new/delete correctly (avoiding memory bugs such as segfaults and
leaks)

• writer safer code with const and references

Outline
TopHat and Worksheet

Memory Layout: Code/Stack/Heap

new/delete

arrays

Worksheet

Safety

Outline
TopHat and Worksheet

Memory Layout: Code/Stack/Heap

new/delete

arrays

Worksheet

Safety

Processes and Address Spaces

physical memory

0 M
physical addresses

virtual address
spaces

0 N 0 N

Address spaces
• A process is a running program
• Each process has it's own virtual address space
• The same virtual address generally refers to different memory in different processes
• Regular processes cannot directly access physical memory or other addr spaces

Processes and Address Spaces

physical memory

0 M
physical addresses

virtual address
spaces

0 N 0 N

Address spaces
• A process is a running program
• Each process has it's own virtual address space
• The same virtual address generally refers to different memory in different processes
• Regular processes cannot directly access physical memory or other addr spaces
• Address spaces can have holes (N is usually MUCH bigger than M)
• Physical memory for a process need not be contiguous

Pages

physical memory

0 Mphysical addresses

virtual address
spaces

0 N 0 N

Address spaces
• pages (usually 4 KB) of memory are mapped to physical memory
• UNIX operating systems provide mmap (memory map) call to fill addr space

mmap (Memory Map)

physical memory

0 Mphysical addresses

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

Anonymous mmap

physical memory

0 Mphysical addresses

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

File-Backed mmap

physical memory

0 Mphysical addresses

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

somefile.txt

File-Backed mmap

physical memory

0 M

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

somefile.txt

read data

read from disk

File-Backed mmap

physical memory

0 M

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

somefile.txt

read data

read from disk

What goes in an address space?

virtual address
spaces

what goes here?

0 N

https://pythontutor.com/cpp.html#mode=edit

What goes in an address space?

virtual address
spaces

0 N

machine
code

stack

Note: a stack has parms, local vars, etc -- it's contiguous in mem

What goes in an address space?

virtual address
spaces

0 N

machine
code

stacklibsparr-
ow.so

Note: file-backed mmaps load in other code (e.g., .so files)

libc.so

virtual address
spaces

0 N

machine
code

stacklibsparr-
ow.so

libc.so

instruction pointer

How does code execute?

virtual address
spaces

0 N

machine
code

stacklibsparr-
ow.so

libc.so

How does code execute?

CPUs
• CPUs are attached to at most one instruction pointer at any given time
• they run code by executing instructions and advancing the instruction pointer

virtual address
spaces

0 N

machine
code

stacklibsparr-
ow.so

libc.so

How does code execute?

CPUs
• CPUs are attached to at most one instruction pointer at any given time
• they run code by executing instructions and advancing the instruction pointer
• CPU moves instruction pointer as code executes

virtual address
spaces

0 N

machine
code

stacklibsparr-
ow.so

libc.so

How does code execute?

CPUs
• function called: stack frame added to stack (for new vars, params)
• function returns: stack frame popped (to free up that memory)

virtual address
spaces

0 N

machine
code

stacklibsparr-
ow.so

libc.so

How does code execute?

CPUs
• function called: stack frame added to stack (for new vars, params)
• function returns: stack frame popped (to free up that memory)

Threads

virtual address
spaces program stack.so

Threads have their own instruction pointers and stacks. 
Multiple threads let us use multiple CPU cores at the same time!

Single-threaded process:

virtual address
spaces program stack.so

Multi-threaded process:

stack

Stack: Benefits and Limitations

virtual address
spaces program stack.so

Multi-threaded process:

stack

Limitation 2:
limited room

to grow

Limitation 1: what if we want data shared across threads?

Limitation 2: what if we want the data to stay around after function returns?

Benefit 1: cleanup happens automatically when function returns!

Benefit 2: allocating/dealocating stack memory is FAST.

Heap

virtual address
spaces program stack.so

Multi-threaded process:

stack

Characteritics
• explicitly control memory lifetime with new/delete
• shared across threads
• non-contiguous, can use more memory

Note: anonymous mmaps grab pages of memory from operating system

heap

Heap

virtual address
spaces program stack.so

Multi-threaded process:

stack

Characteritics
• explicitly control memory lifetime with new/delete
• shared across threads
• non-contiguous, can use more memory

Note: anonymous mmaps grab pages of memory from operating system

heap heap he
ap

Outline
TopHat and Worksheet

Memory Layout: Code/Stack/Heap

new/delete

arrays

Worksheet

Safety

Motivation: Stack (with bug)

int* mult2(int x) {

 int y = x * 2;

 return &y;

}

int main() {

 int* result = mult2(3);

 cout << *result << "\n";

}

as soon as mult2 returns,
memory for y is no longer valid

result points to invalid memory

if we want memory to stay valid
after function return, we should

use the heap, not the stack

Heap (with leak bug)

int* mult2(int x) {

 int* y = new int{x*2};

 return y;

}

int main() { 
 {

 int* result = mult2(3);

 cout << *result << "\n"; 
 } 
 
 ...

}

new: y will point to 4 bytes of
heap memory

result points to valid memory!

but it will never be released...

Heap (with double free bug)

int* mult2(int x) {

 int* y = new int{x*2};

 return y;

}

int main() { 
 {

 int* result = mult2(3);

 cout << *result << "\n"; 
 delete result;

 delete result; 
 }

 ...

} malloc: *** error for object 0x600000ce8040: 

 pointer being freed was not allocated

Heap (with dangling pointer bug)

int* mult2(int x) {

 int* y = new int{x*2};

 return y;

}

int main() { 
 {

 int* result = mult2(3);

 delete result;

 cout << *result << "\n"; 
 }

 ...

}

// -1243955136, or some
// other garbage value

The Heap is Tricky

Still need to worry about memory corruptions and segfaults.

"Exciting" new kinds of memory bugs too!
• leaks
• double frees
• dangling pointers

Every "new" call needs a corresponding "delete" call, at the right time: after no more
pointers will be followed to that memory. Ideally as soon as possible after that!

Getting this right is hard and complex! Common to have extra data for
bookkeeping (for example, an int that keeps track of how many active pointers
reference a variable).

Big C++ advantage over C: references and smart pointers (which we'll learn soon!)
help us avoid many common mistakes.

Memory API Comparison

malloc/free should never appear
in your code this semester!

allocate deallocate notes

C++ new delete
built on malloc, but returns specific type (no need
to cast) and does init/cleanup (constructor/
destructor) in addition to basic memory work

C malloc free any granularity (e.g., 8-byte double); uses mmap

UNIX mmap munmap page granularity (4 KB)

Outline
TopHat and Worksheet

Memory Layout: Code/Stack/Heap

new/delete

arrays

Worksheet

Safety

Arrays
What if we want more than one value of the same type, contiguous in memory?

We can use arrays! Arrays are very minimalist. Cannot resize. Number of elements
often not even stored anywhere (need separate variable).

Advice
• consider using C++ arrays when building your own data structures
• use vector, STL arrays, or other structs in most case

Arrays on the Stack

struct Loc {

 int x = 0;

 int y = 0;

};

int main() {

 Loc locations[3];

}

address space:

...

0

0

0

0

140

132

0

0

124

m
ain

locations

Arrays on the Stack

struct Loc {

 int x = 0;

 int y = 0;

};

int main() {

 Loc locations[3];

 locations[2].x = 9;

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

Arrays "Decay" to Pointers

struct Loc {

 int x = 0;

 int y = 0;

};

int main() {

 Loc locations[3];

 locations[2].x = 9;

 Loc *p = locations;

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p

Arrays "Decay" to Pointers

struct Loc {

 int x = 0;

 int y = 0;

};

int main() {

 Loc locations[3];

 locations[2].x = 9;

 Loc *p = locations;

 p

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p

Arrays "Decay" to Pointers

struct Loc {

 int x = 0;

 int y = 0;

};

int main() {

 Loc locations[3];

 locations[2].x = 9;

 Loc *p = locations;

 *p

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p

Arrays "Decay" to Pointers

struct Loc {

 int x = 0;

 int y = 0;

};

int main() {

 Loc locations[3];

 locations[2].x = 9;

 Loc *p = locations;

 p[2]

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p

Arrays "Decay" to Pointers

struct Loc {

 int x = 0;

 int y = 0;

};

int main() {

 Loc locations[3];

 locations[2].x = 9;

 Loc *p = locations;

 p[2].x

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p

sizeof behavior

struct Loc {

 int x = 0;

 int y = 0;

};

int main() {

 Loc locations[3];

 locations[2].x = 9;

 Loc *p = locations;

 sizeof(p)

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p

8 bytes

sizeof behavior

struct Loc {

 int x = 0;

 int y = 0;

};

int main() {

 Loc locations[3];

 locations[2].x = 9;

 Loc *p = locations;

 sizeof(locations)

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p

24 bytes

sizeof behavior

struct Loc {

 int x = 0;

 int y = 0;

};

int main() {

 Loc locations[3];

 locations[2].x = 9;

 Loc *p = locations;

 (sizeof(locations) /

 sizeof(locations[0])

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p

3 elements

Arrays on the Stack Heap

struct Loc {

 int x = 0;

 int y = 0;

};

int f() {

 Loc locs[3];

}

address space:

...

0

0

0

0

132

0

0

124

f

locs

140

this memory will
be released when f

returns and the
stack frame is popped

Arrays on the Stack Heap address space:

...

140

124

f

locs

140

0

0

0

0

0

0

he
ap

struct Loc {

 int x = 0;

 int y = 0;

};

int f() {

 Loc* locs = new Loc[3];

}

new can be used
in combination
with brackets

Arrays on the Stack Heap

struct Loc {

 int x = 0;

 int y = 0;

};

int f() {

 Loc* locs = new Loc[3];

 locs

}

address space:

...

140

124

f

locs

140

0

0

0

0

0

0

he
ap

Arrays on the Stack Heap

struct Loc {

 int x = 0;

 int y = 0;

};

int f() {

 Loc* locs = new Loc[3];

 locs[1]

}

address space:

...

140

124

f

locs

140

0

0

0

0

0

0

he
ap

Arrays on the Stack Heap

struct Loc {

 int x = 0;

 int y = 0;

};

int f() {

 Loc* locs = new Loc[3];

 locs[1].y = 9;

}

address space:

...

140

124

f

locs

140

0

9

0

0

0

0

he
ap

Arrays on the Stack Heap

struct Loc {

 int x = 0;

 int y = 0;

};

int f() {

 Loc* locs = new Loc[3];

 locs[1].y = 9;

 return 123;

}

address space:

...

140

124 locs

140

0

9

0

0

0

0

he
ap

stack frame (with
pointer) is gone

upon return

array is still
on the heap

Arrays on the Stack Heap

struct Loc {

 int x = 0;

 int y = 0;

};

int f() {

 Loc* locs = new Loc[3];

 locs[1].y = 9;

 delete[] locs;

 return 123;

}

address space:

...

140

124 locs

140

he
ap

stack frame (with
pointer) is gone

upon return

delete[]
frees up

array on the
heap

delete vs. delete[]

struct Loc {

 int x = 0;

 int y = 0;

};

int f() {

 Loc* b = new Loc;

 Loc* a = new Loc[2];

 delete b;

 delete[] a;

}

address space:

...

164

124

f b

140

0

0

0

2

0

he
ap

0

0

144

164

144 a

cle
an

up
cle

an
up

cle
an

up

for complicated types, C++ needs to
cleanup (i.e., "destroy") each object.

delete[] can tell C++ it needs to look just
before the array pointer to get the size

and know how many items need cleanup

Outline
TopHat and Worksheet

Memory Layout: Code/Stack/Heap

new/delete

arrays

Worksheet

Safety

Outline
TopHat and Worksheet

Memory Layout: Code/Stack/Heap

new/delete

arrays

Worksheet

Safety
• const
• references

const Motivation
Reasons to use pointers

• avoid copy
• let function modify our value

What if we DO NOT want to let a function modify our value (can lead to bugs), but
still want to avoid a copy?

const lets us indicate that we may not modify a value (after it is initially set).

Disallow Value Changes
Reasons to use pointers

• avoid copy
• let function modify our value

What if we DO NOT want to let a function modify our value (can lead to bugs), but
still want to avoid a copy?

const lets us indicate that we may not modify a value (after it is initially set).

int main() {

 int x = 3;

 int y = 4;

 const int* z = &x;

 z = &y; // modify pointer

 *z = 9; // modify value

 cout << x << " " << y << "\n";

}

not allowed

Disallow Pointer Changes

int main() {

 int x = 3;

 int y = 4;

 int* const z = &x;

 z = &y; // modify pointer

 *z = 9; // modify value

 cout << x << " " << y << "\n";

}

not allowed

rarely used because
references (up next!)

also offer this

Reasons to use pointers
• avoid copy
• let function modify our value

What if we DO NOT want to let a function modify our value (can lead to bugs), but
still want to avoid a copy?

const lets us indicate that we may not modify a value (after it is initially set).

Disallow Both Changes

int main() {

 int x = 3;

 int y = 4;

 const int* const z = &x;

 z = &y; // modify pointer

 *z = 9; // modify value

 cout << x << " " << y << "\n";

}

not allowed
not allowed

Reasons to use pointers
• avoid copy
• let function modify our value

What if we DO NOT want to let a function modify our value (can lead to bugs), but
still want to avoid a copy?

const lets us indicate that we may not modify a value (after it is initially set).

const Parameters

void f(int *x) {

 cout << *x << "\n";

}

void g(const int *x) {

 cout << *x << "\n";

}

int main() {

 int var = 3;

 const int c = 4;

 f(&var);

 f(&c);

 g(&var);

 g(&c);

}

not allowed

if we don't want a variable changed,
we're prevented from passing it to

a function that doesn't promise not to change it

Outline
TopHat and Worksheet

Memory Layout: Code/Stack/Heap

new/delete

arrays

Worksheet

Safety
• const
• references

References Motivation
Pointer disadvantages

• ugly syntax: &, *, ->, .
• error prone (don't forget to check if it is NULL!)

References are pointers with 3 differences:
• nicer syntax (no *, ->)
• cannot be NULL
• one reference can only point to one thing (cannot change later)

Syntax: Pointers vs. References (Diff 1)

Coord coord{.x=3,.y=4};

Coord* p = &coord;

f(p->x);

g(*p);

Coord coord{.x=3,.y=4};

Coord& r = coord;

f(r.x);

g(r);

nullptr (Diff 2)

Coord coord{.x=3,.y=4};

Coord* p = nullptr;

...

if (p)

 f(p->x);

Coord coord{.x=3,.y=4};

Coord& r = ...;

...

f(r.x);

cannot be null

no safety check needed

Pointing Elsewhere (Diff 3)

Coord coord1{.x=3,.y=4};

Coord coord2{.x=6,.y=7};

Coord* p = &coord1;

p = &coord2;

Coord coord1{.x=3,.y=4};

Coord coord2{.x=6,.y=7};

Coord& r = coord1;

r will always refer to coord1

Reference Recap
References are pointers with 3 differences:

• nicer syntax (no *, ->)
• cannot be NULL
• one reference can only point to one thing (cannot change later)

Places to use pointers:
• might want to change what we point to (e.g., looping over an array)
• might want to represent a missing value (with nullptr)
• return type of "new" is a pointer!

Otherwise you should probably use a reference.

