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What will you learn today?

Learning objectives

• describe memory layout

• decide when to use stack or heap for a particular piece of data

• use new/delete correctly (avoiding memory bugs such as segfaults and 
leaks)

• writer safer code with const and references
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Processes and Address Spaces

physical memory

0 M
physical addresses

virtual address
spaces

0 N 0 N

Address spaces
• A process is a running program
• Each process has it's own virtual address space
• The same virtual address generally refers to different memory in different processes
• Regular processes cannot directly access physical memory or other addr spaces



Processes and Address Spaces

physical memory

0 M
physical addresses

virtual address
spaces

0 N 0 N

Address spaces
• A process is a running program
• Each process has it's own virtual address space
• The same virtual address generally refers to different memory in different processes
• Regular processes cannot directly access physical memory or other addr spaces
• Address spaces can have holes (N is usually MUCH bigger than M)
• Physical memory for a process need not be contiguous



Pages

physical memory

0 Mphysical addresses

virtual address
spaces

0 N 0 N

Address spaces
• pages (usually 4 KB) of memory are mapped to physical memory
• UNIX operating systems provide mmap (memory map) call to fill addr space



mmap (Memory Map)

physical memory

0 Mphysical addresses

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space.  Two varities:
• anonymous
• backed by a file



Anonymous mmap
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An mmap call can add new regions to a virtual address space.  Two varities:
• anonymous
• backed by a file



File-Backed mmap
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somefile.txt
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File-Backed mmap

physical memory

0 M

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space.  Two varities:
• anonymous
• backed by a file

somefile.txt

read data

read from disk



What goes in an address space?

virtual address
spaces

what goes here?

0 N

https://pythontutor.com/cpp.html#mode=edit



What goes in an address space?

virtual address
spaces

0 N

machine
code

stack

Note: a stack has parms, local vars, etc -- it's contiguous in mem



What goes in an address space?

virtual address
spaces

0 N

machine
code

stacklibsparr-
ow.so

Note: file-backed mmaps load in other code (e.g., .so files)

libc.so
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instruction pointer

How does code execute?
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How does code execute?

CPUs
• CPUs are attached to at most one instruction pointer at any given time
• they run code by executing instructions and advancing the instruction pointer
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machine
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How does code execute?

CPUs
• CPUs are attached to at most one instruction pointer at any given time
• they run code by executing instructions and advancing the instruction pointer
• CPU moves instruction pointer as code executes
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How does code execute?

CPUs
• function called: stack frame added to stack (for new vars, params)
• function returns: stack frame popped (to free up that memory)
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machine
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stacklibsparr-
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libc.so

How does code execute?

CPUs
• function called: stack frame added to stack (for new vars, params)
• function returns: stack frame popped (to free up that memory)



Threads

virtual address
spaces program stack.so

Threads have their own instruction pointers and stacks. 
Multiple threads let us use multiple CPU cores at the same time!

Single-threaded process:

virtual address
spaces program stack.so

Multi-threaded process:

stack



Stack: Benefits and Limitations

virtual address
spaces program stack.so

Multi-threaded process:

stack

Limitation 2:
limited room 

to grow

Limitation 1: what if we want data shared across threads?

Limitation 2: what if we want the data to stay around after function returns?

Benefit 1: cleanup happens automatically when function returns!

Benefit 2: allocating/dealocating stack memory is FAST.



Heap

virtual address
spaces program stack.so

Multi-threaded process:

stack

Characteritics
• explicitly control memory lifetime with new/delete
• shared across threads
• non-contiguous, can use more memory

Note: anonymous mmaps grab pages of memory from operating system

heap



Heap

virtual address
spaces program stack.so

Multi-threaded process:

stack

Characteritics
• explicitly control memory lifetime with new/delete
• shared across threads
• non-contiguous, can use more memory

Note: anonymous mmaps grab pages of memory from operating system

heap heap he
ap
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Motivation: Stack (with bug)

int* mult2(int x) {

  int y = x * 2;

  return &y;

}


int main() {

  int* result = mult2(3);

  cout << *result << "\n";

}

as soon as mult2 returns, 
memory for y is no longer valid

result points to invalid memory

if we want memory to stay valid 
after function return, we should 

use the heap, not the stack



Heap (with leak bug)

int* mult2(int x) {

  int* y = new int{x*2};

  return y;

}


int main() { 
  {

    int* result = mult2(3);

    cout << *result << "\n"; 
  } 
 
  ...

}

new: y will point to 4 bytes of 
heap memory

result points to valid memory!

but it will never be released...



Heap (with double free bug)

int* mult2(int x) {

  int* y = new int{x*2};

  return y;

}


int main() { 
  {

    int* result = mult2(3);

    cout << *result << "\n"; 
    delete result;

    delete result; 
  }

  ...

} malloc: *** error for object 0x600000ce8040: 

        pointer being freed was not allocated



Heap (with dangling pointer bug)

int* mult2(int x) {

  int* y = new int{x*2};

  return y;

}


int main() { 
  {

    int* result = mult2(3);

    delete result;

    cout << *result << "\n"; 
  }

  ...

}

// -1243955136, or some 
// other garbage value



The Heap is Tricky

Still need to worry about memory corruptions and segfaults.

"Exciting" new kinds of memory bugs too!
• leaks
• double frees
• dangling pointers

Every "new" call needs a corresponding "delete" call, at the right time: after no more 
pointers will be followed to that memory.  Ideally as soon as possible after that!

Getting this right is hard and complex!  Common to have extra data for 
bookkeeping (for example, an int that keeps track of how many active pointers 
reference a variable).

Big C++ advantage over C: references and smart pointers (which we'll learn soon!) 
help us avoid many common mistakes.



Memory API Comparison

malloc/free should never appear 
in your code this semester!

allocate deallocate notes

C++ new delete
built on malloc, but returns specific type (no need 
to cast) and does init/cleanup (constructor/
destructor) in addition to basic memory work

C malloc free any granularity (e.g., 8-byte double); uses mmap

UNIX mmap munmap page granularity (4 KB)
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Arrays
What if we want more than one value of the same type, contiguous in memory?

We can use arrays!  Arrays are very minimalist.  Cannot resize.  Number of elements 
often not even stored anywhere (need separate variable).

Advice
• consider using C++ arrays when building your own data structures
• use vector, STL arrays, or other structs in most case



Arrays on the Stack

struct Loc {

  int x = 0;

  int y = 0;

};


int main() {

  Loc locations[3];

}

address space:

...
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Arrays on the Stack

struct Loc {

  int x = 0;

  int y = 0;

};


int main() {

  Loc locations[3];

  locations[2].x = 9;

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations



Arrays "Decay" to Pointers

struct Loc {

  int x = 0;

  int y = 0;

};


int main() {

  Loc locations[3];

  locations[2].x = 9;

  Loc *p = locations;

}

address space:

...
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Arrays "Decay" to Pointers

struct Loc {

  int x = 0;

  int y = 0;

};


int main() {

  Loc locations[3];

  locations[2].x = 9;

  Loc *p = locations;

  p

}

address space:

...

0

0
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Arrays "Decay" to Pointers

struct Loc {

  int x = 0;

  int y = 0;

};


int main() {

  Loc locations[3];

  locations[2].x = 9;

  Loc *p = locations;

  *p

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p



Arrays "Decay" to Pointers

struct Loc {

  int x = 0;

  int y = 0;

};


int main() {

  Loc locations[3];

  locations[2].x = 9;

  Loc *p = locations;

  p[2]

}

address space:

...

0

0

9

0
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132

0

0
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Arrays "Decay" to Pointers

struct Loc {

  int x = 0;

  int y = 0;

};


int main() {

  Loc locations[3];

  locations[2].x = 9;

  Loc *p = locations;

  p[2].x

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p



sizeof behavior

struct Loc {

  int x = 0;

  int y = 0;

};


int main() {

  Loc locations[3];

  locations[2].x = 9;

  Loc *p = locations;

  sizeof(p)

}

address space:

...

0

0

9

0

140

132

0

0
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ain

locations

124

116 p

8 bytes



sizeof behavior

struct Loc {

  int x = 0;

  int y = 0;

};


int main() {

  Loc locations[3];

  locations[2].x = 9;

  Loc *p = locations;

  sizeof(locations)

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p

24 bytes



sizeof behavior

struct Loc {

  int x = 0;

  int y = 0;

};


int main() {

  Loc locations[3];

  locations[2].x = 9;

  Loc *p = locations;

  (sizeof(locations) / 

  sizeof(locations[0])

}

address space:

...

0

0

9

0

140

132

0

0

124

m
ain

locations

124

116 p

3 elements



Arrays on the Stack Heap

struct Loc {

  int x = 0;

  int y = 0;

};


int f() {

  Loc locs[3];

}

address space:

...

0

0

0

0

132

0

0

124

f

locs

140

this memory will
be released when f

returns and the
stack frame is popped



Arrays on the Stack Heap address space:

...

140

124

f

locs

140
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0

0

0

0

he
ap

struct Loc {

  int x = 0;

  int y = 0;

};


int f() {

  Loc* locs = new Loc[3];

}

new can be used 
in combination 
with brackets



Arrays on the Stack Heap

struct Loc {

  int x = 0;

  int y = 0;

};


int f() {

  Loc* locs = new Loc[3];  

  locs

}

address space:

...

140

124

f

locs
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0

0

0

0

0

0

he
ap



Arrays on the Stack Heap

struct Loc {

  int x = 0;

  int y = 0;

};


int f() {

  Loc* locs = new Loc[3];  

  locs[1]

}

address space:

...

140

124

f

locs

140

0

0

0

0

0

0

he
ap



Arrays on the Stack Heap

struct Loc {

  int x = 0;

  int y = 0;

};


int f() {

  Loc* locs = new Loc[3];  

  locs[1].y = 9;

}

address space:

...

140

124

f

locs

140

0

9

0

0

0

0

he
ap



Arrays on the Stack Heap

struct Loc {

  int x = 0;

  int y = 0;

};


int f() {

  Loc* locs = new Loc[3];  

  locs[1].y = 9;

  return 123;

}

address space:

...

140

124 locs

140

0

9

0

0

0

0

he
ap

stack frame (with 
pointer) is gone 

upon return

array is still 
on the heap



Arrays on the Stack Heap

struct Loc {

  int x = 0;

  int y = 0;

};


int f() {

  Loc* locs = new Loc[3];  

  locs[1].y = 9;

  delete[] locs;

  return 123;

}

address space:

...

140

124 locs

140

he
ap

stack frame (with 
pointer) is gone 

upon return

delete[] 
frees up 

array on the 
heap



delete vs. delete[]

struct Loc {

  int x = 0;

  int y = 0;

};


int f() {

  Loc* b = new Loc;

  Loc* a = new Loc[2];

  delete b;

  delete[] a;

}

address space:

...

164

124

f b

140

0

0

0

2

0

he
ap

0

0

144

164

144 a

cle
an

up
cle

an
up

cle
an

up

for complicated types, C++ needs to 
cleanup (i.e., "destroy") each object.

delete[] can tell C++ it needs to look just 
before the array pointer to get the size 

and know how many items need cleanup
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const Motivation
Reasons to use pointers

• avoid copy
• let function modify our value

What if we DO NOT want to let a function modify our value (can lead to bugs), but 
still want to avoid a copy?

const lets us indicate that we may not modify a value (after it is initially set).



Disallow Value Changes
Reasons to use pointers

• avoid copy
• let function modify our value

What if we DO NOT want to let a function modify our value (can lead to bugs), but 
still want to avoid a copy?

const lets us indicate that we may not modify a value (after it is initially set).

int main() {

  int x = 3;

  int y = 4;

  const int* z = &x;

                                                                                                                                                                                                                                   

  z = &y; // modify pointer

  *z = 9; // modify value


  cout << x << " " << y << "\n";

}


not allowed



Disallow Pointer Changes

int main() {

  int x = 3;

  int y = 4;

  int* const z = &x;

                                                                                                                                                                                                                                   

  z = &y; // modify pointer

  *z = 9; // modify value


  cout << x << " " << y << "\n";

}


not allowed

rarely used because
references (up next!)

also offer this

Reasons to use pointers
• avoid copy
• let function modify our value

What if we DO NOT want to let a function modify our value (can lead to bugs), but 
still want to avoid a copy?

const lets us indicate that we may not modify a value (after it is initially set).



Disallow Both Changes

int main() {

  int x = 3;

  int y = 4;

  const int* const z = &x;

                                                                                                                                                                                                                                   

  z = &y; // modify pointer

  *z = 9; // modify value


  cout << x << " " << y << "\n";

}


not allowed
not allowed

Reasons to use pointers
• avoid copy
• let function modify our value

What if we DO NOT want to let a function modify our value (can lead to bugs), but 
still want to avoid a copy?

const lets us indicate that we may not modify a value (after it is initially set).



const Parameters

void f(int *x) {

  cout << *x << "\n";

}


void g(const int *x) {

  cout << *x << "\n";

}


int main() {

  int var = 3;

  const int c = 4;


  f(&var);

  f(&c);

  g(&var);

  g(&c);

}


not allowed

if we don't want a variable changed,
we're prevented from passing it to

a function that doesn't promise not to change it
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References Motivation
Pointer disadvantages

• ugly syntax: &, *, ->, .
• error prone (don't forget to check if it is NULL!)

References are pointers with 3 differences:
• nicer syntax (no *, ->)
• cannot be NULL
• one reference can only point to one thing (cannot change later)



Syntax: Pointers vs. References (Diff 1)

Coord coord{.x=3,.y=4};


Coord* p = &coord;

f(p->x);

g(*p);

Coord coord{.x=3,.y=4};


Coord& r = coord;

f(r.x);

g(r);



nullptr (Diff 2)

Coord coord{.x=3,.y=4};


Coord* p = nullptr;


...


if (p)

  f(p->x);

Coord coord{.x=3,.y=4};


Coord& r = ...;


...


f(r.x);

cannot be null

no safety check needed



Pointing Elsewhere (Diff 3)

Coord coord1{.x=3,.y=4};

Coord coord2{.x=6,.y=7};


Coord* p = &coord1;

p = &coord2;

Coord coord1{.x=3,.y=4};

Coord coord2{.x=6,.y=7};


Coord& r = coord1;

r will always refer to coord1



Reference Recap
References are pointers with 3 differences:

• nicer syntax (no *, ->)
• cannot be NULL
• one reference can only point to one thing (cannot change later)

Places to use pointers:
• might want to change what we point to (e.g., looping over an array)
• might want to represent a missing value (with nullptr)
• return type of "new" is a pointer!

Otherwise you should probably use a reference.


