
[368] Object Oriented
Programming

Tyler Caraza-Harter

Outline
TopHat and Worksheet

Methods

Encapsulation

Constructors/Destructors

Copy Constructors

Demos

C++ History

Fun Fact: C++ was originally called "C with Classes"

• 1979: Work on "C with Classes" started

• 1984: "C with Classes" was renamed to C++

Ch 19.1

What will you learn today?

Learning objectives

• organize data and related functions together using structs/classes

• control visibility with public/private/friend in order to encapsulate internal
implementation details, separate from the public interface

• identify where in code constructors and destructors will execute

• write copy constructors together with with destructors to avoid memory
bugs (specifically leaks and double frees)

Outline
TopHat and Worksheet

Methods

Encapsulation

Constructors/Destructors

Copy Constructors

Demos

Motivation for Methods
struct Cat {  
 ...  
}

struct Dog {  
 ...  
}

void dog_speak(struct *Dog this) {...}  
void cat_speak(struct *Cat this) {...}  
 
struct Dog d;  
struct Cat c;  
 
dog_speak(&d);  
cat_speak(&c);

in C, it is very common (and cumbersome) to
have a collection of functions for each struct that:

• have a name prefixed with struct name
• take a pointer to struct as first param

Motivation for Methods
struct Cat {  
 ...  
}

struct Dog {  
 ...  
}

void dog_speak(struct *Dog this)
{...}  
void cat_speak(struct *Cat this)
{...}  
 
struct Dog d;  
struct Cat c;  
 
d.speak();  
c.speak();

methods
• cleaner syntax
• create possibility to override inherited methods

Outline
TopHat and Worksheet

Methods

Encapsulation

Constructors/Destructors

Copy Constructors

Demos

Motivation for Encapsulation

some object (obj)

3 5 9 6 8 obj.values.push_back(8)

obj.in_range(4,7)

values

in_range
method [5,6]

• if we add frequently and call in_range rarely, this implementation is good
• what if we call in_range frequently? Can we improve the library without

breaking all the programs that use the library?

Motivation for Encapsulation

some object (obj)

obj.add(8)

obj.in_range(4,7)in_range
method [5,6]

Keeping implementation private lets us change the implementation without
breaking users!

• perhaps a binary search tree is a better data structure than a vector
• can also easily change the code (but not declaration!) of the public

methods. For example, perhaps add should sort a vector of values after
each number is added.

add
method

publicprivate

?

Outline
TopHat and Worksheet

Methods

Encapsulation

Constructors/Destructors

Copy Constructors

Demos

Creating an Object

Allocation: getting some memory for an object
• malloc allocates memory on the heap
• calling a function (or creating local variables) allocates memory on the stack

Initialization: setting some values in that object
• a constructor initializes that memory. You write the constructor!

When it happens
• Heap: new (1) calls malloc then (2) calls the constructor
• Stack: local variable creation (1) allocates stack memory then (2) calls the

constructor

Constructors
Python
class Coord:
 def __init__(self, x, y):
 self.x = x
 self.y = y

// C++
class Coord {
private:
 int x;
 int y;

public:
 Coord(int x, int y) : x(x), y(y) {}
};

// Java
public class Coord {
 private int x;
 private int y;

 public Coord(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

Releasing an Object

Deallocation: giving back some memory for an object object
• Java/Python: deallocation is performed by the garbage collector. Hard to say

when it will happen!
• C++: deallocation happens when a local variable goes out of scope (stack) or

we call delete (heap). Can determine exactly when it will happen.

Destruction: performing additional cleanup
• a C++ destructor performs additional cleanup work, just before deallocation.

You write the constructor!
• Java/Python: don't have serious destructors (Python has __del__, but you can't

know if/when it will be called)

Examples of extra cleanup
• closing a file
• closing a socket
• calling delete on a pointer from the object being destroyed to another object

(when we know we have the only pointer to the second object)
• logging something (e.g., how long the object lived)

Outline
TopHat and Worksheet

Methods

Encapsulation

Constructors/Destructors

Copy Constructors

Demos

Copy Motivation
// CODE:  
DNA obj1{"CATGCGCATAG};

Stack Heap

m
ain

11size
ptrob

j1 CATGCGCATAG

Copy Motivation
// CODE:  
DNA obj1{"CATGCGCATAG};  
DNA obj2 = obj1;

Stack Heap

m
ain

11size
ptrob

j1 CATGCGCATAG

11size
ptrob

j2

what do we want
obj2.ptr to point to?

Option 1: Copy Children Too
// CODE:  
DNA obj1{"CATGCGCATAG};  
DNA obj2 = obj1;

Stack Heap

m
ain

11size
ptrob

j1 CATGCGCATAG

11size
ptrob

j2 CATGCGCATAG

Option 2: Share Heap Memory
// CODE:  
DNA obj1{"CATGCGCATAG};  
DNA obj2 = obj1;

Stack Heap

m
ain

11size
ptrob

j1 CATGCGCATAG

11size
ptrob

j2

• more efficient
• cannot be mutable!
• when should we call delete?

Option 2: Share Heap Memory
// CODE:  
DNA obj1{"CATGCGCATAG};  
DNA obj2 = obj1;

Stack Heap

m
ain

11size
ptrob

j1 CATGCGCATAG

11size
ptrob

j2

• more efficient
• cannot be mutable!
• when should we call delete?

2
reference count

Copy Constructor
// CODE:  
DNA obj1{"CATGCGCATAG};  
DNA obj2 = obj1;

Stack Heap

m
ain

11size
ptrob

j1 CATGCGCATAG

11size
ptrob

j2

• more efficient
• cannot be mutable!
• when should we call delete?

2
reference count

// copy constructor  
DNA(const &other) {  
 // choose copy behavior  
 // here  
}

implicit call

Special OOP Functions in C++
// CODE:  
DNA obj1{"CATGCGCATAG};  
DNA obj2 = obj1;

Notes
• most classes have code for some kind of constructor
• in many cases, C++ provides reasonable copy constructors and destructors
• you can choose to "delete" some of the defaults C++ gives you (e.g.,

creating on "uncopyable" object) or define custom implementations
• it is usually incorrect to have a destructor without a copy constructor (and

vice versa)
• other special functions (for another day): move constructor, copy assignment

operator, move assignment operator

// copy constructor  
DNA(const &other) {  
 // choose copy behavior  
 // here  
}

implicit call

Outline
TopHat and Worksheet

Methods

Encapsulation

Constructors/Destructors

Copy Constructors

Demos

