| 368] Object Orientec
Programming

Tyler Caraza-Harter

Outline

TopHat and Worksheet
Methods

Encapsulation
Constructors/Destructors
Copy Constructors

Demos

C++ History

Fun Fact: C++ was originally called "C with Classes”
e |9/9:Work on "C with Classes" started

o |984:"C with Classes" was renamed to C++

A
vy

A Tour of C++

Third Edition

Bjarne Stroustrup

What will you learn today?

Learning objectives
® organize data and related functions together using

e control visibility with In order to encapsulate internal
implementation detalls, separate from the public interface

® |dentify where in code and will execute

* write together with with to avoid memory
bugs (specifically leaks and double frees)

Outline

TopHat and Worksheet
Methods

Encapsulation
Constructors/Destructors
Copy Constructors

Demos

Motivation for Methods

struct Cat {

}

struct Dog { * have a name prefixed with struct name
* take a pointer to struct as first param

}

void (struct *Dog this) {...}

void (struct *Cat this) {...}

struct Dog d;
struct Cat c;

dog speak(&d);
cat speak(&c);

Motivation for Methods

* cleaner syntax
struct Dog d; * create possibility to override inherited methods

struct Cat c;

d.speak();
c.speak();

Outline

TopHat and Worksheet
Methods

Encapsulation
Constructors/Destructors
Copy Constructors

Demos

Motivation for Encapsulation

some object (oby)

values
3|5 ‘ 9 ‘ 618 < obj.values.push_back(8)
L> in_range § obj.in_range(4,7)
method > [5,6]

* If we add frequently and call in_range rarely, this implementation is good

* what if we call in_range frequently! Can we improve the library without
breaking all the programs that use the library?

Motivation for Encapsulation

some object (oby)

private public
AN - |
- in_range g} obj.in_range(4./)
5 method > [5,6]

Keeping implementation private lets us change the implementation without
breaking users!

* perhaps a binary search tree Is a better data structure than a vector
* can also easily change the code (but not declaration!) of the public

methods. For example, pernaps add should sort a vector of values after
each number Is added.

Outline

TopHat and Worksheet
Methods

Encapsulation
Constructors/Destructors
Copy Constructors

Demos

Creating an Object

: getting some memory for an object
. allocates memory on the heap
. (or creating local variables) allocates memory on the stack

: setting some values Iin that object
* 2 initializes that memory. You write the constructor!

When it happens
¢ Heap: (1) calls malloc then (2) calls the constructor

* Stack:local variable creation (1) allocates stack memory then (2) calls the
constructor

Constructors

Python
class Coord:

def init (self, x, y):

self.x = x
self.y =y
// C++
class Coord {
private:
int x;
int y;
public:
Coord(int x, int y)
i

// Java

public class Coord {
private int x;
private int y;

public Coord(int x,
this.x = x;
this.y = y;

int y) {

x(x), y(y) {}

Releasing an Object

. giving back some memory for an object object

. . deallocation I1s performed by the garbage collector. Hard to say
when 1t will happen!

. . deallocation happens when a local variable goes out of scope (stack) or
we call delete (heap). Can determine exactly when it will happen.

. performing addrtional cleanup

* 2 performs additional cleanup work; just before deallocation.
You write the constructor!

° . don't have serious destructors (Python has __del__, but you can't
know if/when it will be called)

Examples of extra cleanup
* closing afile
* closing a socket

* calling delete on a pointer from the object being destroyed to another object
(when we know we have the only pointer to the second object)

* logging something (e.g., how long the object lived)

Outline

TopHat and Worksheet
Methods

Encapsulation
Constructors/Destructors
Copy Constructors

Demos

Copy Motivation

// CODE:

DNA objl{"CATGCGCATAG};

Stack

main

obj |

size

ptr

11

Heap

CATGCGCATAG

Copy Motivation

// CODE:
DNA obijl{"CATGCGCATAG};
DNA obj2 = objl;

Stack | Heap
= Size 11 i _—|CATGCGCATAG
O pt 4—:
ptr :
c :
s :
o size 11 :
E ptr //

Option |: Copy Children Too

// CODE:
DNA objl{"CATGCGCATAG};
DNA obj2 = objl;

Stack | Heap
= Size 11 i _—|CATGCGCATAG
O pt 4 —:
ptr :
=
s :
N size 11 . —|[CATGCGCATAG
© ptr +—

Option 2: Share Heap Memory

// CODE:
DNA obijl{"CATGCGCATAG};
DNA obj2 = objl;

Stack | Heap
= Size 11 / CATGCGCATAG
O _//
pir !
f= :
s | : * more efficient
o size 11 :
3 t / 5 e cannot be mutable!
ptr E e when should we call delete?

Option 2: Share Heap Memory

// CODE:
DNA obijl{"CATGCGCATAG};
DNA obj2 = objl;

Stack | Heap
= Size 11 / CATGCGCATAG |2
Ot -//
ptr :

f= :
& | : * more efficient

o size 11 :

e / : e cannot be mutable!

© ptr . :

: * when should we call delete?

Copy Constructor

// CODE: // copy constructor
DNA objl{ucATGCGCéEéEii”,,,»DNA(const sother) {
DNA obj2 = objl; // choose copy behavior
// here
}
Stack _ Heap
—. size 11 i CATGCGCATAG |2
=—=ny
ptr ;
= !
s | » ; * more efficient
o~ :
T O / : * cannot be mutablel
© ptr - .
: when should we call delete!?

Special OOP Functions in C++

// CODE: // copy constructor
DNA objl{-.cATGCGCWDNA(const sother) {
DNA obj2 = objl; // choose copy behavior

// here

Notes
* most classes have code for some kind of constructor
* In many cases, C++ provides reasonable copy constructors and destructors

* you can choose to "delete" some of the defaults C++ gives you (e.g,
creating on "uncopyable" object) or define custom implementations

* 1tis usudlly incorrect to have a destructor without a copy constructor (and
vice versa)

* other special functions (for another day): move constructor, copy assignment
operator, move assignment operator

Outline

TopHat and Worksheet
Methods

Encapsulation
Constructors/Destructors
Copy Constructors

Demos

