
[368] Smart Pointers
Tyler Caraza-Harter

Outline
Worksheet and TopHat

Resources

Unique Pointers

Demos
• Unique Pointers
• File I/O

Shared Pointers

Demos

What will you learn today?

Learning objectives

• manage resources using the RAII pattern

• write code that uses smart pointers (and avoids regular pointers)

• describe how shared_pointers using reference counting

• identify scenarios where share_pointers leak

Outline
Worksheet and TopHat

Resources

Unique Pointers

Demos
• Unique Pointers
• File I/O

Shared Pointers

Demos

Resources
Examples of resources

• stack memory
• heap memory
• file handles
• sockets
• web tokens
• threads
• processes
• locks
• ...

Goal: don't retain resources we're not using (e.g., don't leak memory), but don't
release resources we're still using!

reminder: don't forget about exceptions!

Resources
Examples of resources

• stack memory
• heap memory
• file handles
• sockets
• web tokens
• threads
• processes
• locks
• ...

Goal: don't retain resources we're not using (e.g., don't leak memory), but don't
release resources we're still using!

release upon function return (Java, Python, C++)

reminder: don't forget about exceptions!

exception safe

Resources
Examples of resources

• stack memory
• heap memory
• file handles
• sockets
• web tokens
• threads
• processes
• locks
• ...

Goal: don't retain resources we're not using (e.g., don't leak memory), but don't
release resources we're still using!

garbage collector (Java, Python), or it's your job (C++)
easier, fewer bugs less overhead

release sooner
more "online"

destructors are crucial!

reminder: don't forget about exceptions!

Resources
Examples of resources

• stack memory
• heap memory
• file handles
• sockets
• web tokens
• threads
• processes
• locks
• ...

Goal: don't retain resources we're not using (e.g., don't leak memory), but don't
release resources we're still using!

it's your job (Python, Java, and C++)

might still need to do reference counting in a language like Python!

can still leverage C++ destructors

reminder: don't forget about exceptions!

Python+Java have worse primitives, like try/finally, with statement

Heap vs. File# Python
s = "hello " + name  
f = open("file.txt", "w")  
f.write(s)

// Java
public static void main(String[] args) throws IOException {
 String s = new String("hello " + name);
 BufferedWriter f = new BufferedWriter( 
 new FileWriter("file.txt")  
);
 f.write(str);
}

// C++
int main() {
 string* s = new string("hello " + name);
 ofstream* f = new ofstream("file.txt");
 *f << *s;
}

garbage collected

leaks!

garbage collected
leaks!

leaks!
leaks!

Observation: other languages can leak too!

Heap vs. File# Python
s = "hello " + name  
f = open("file.txt", "w")  
f.write(s)  
f.close()

// Java
public static void main(String[] args) throws IOException {
 String s = new String("hello " + name);
 BufferedWriter f = new BufferedWriter( 
 new FileWriter("file.txt")  
);
 f.write(str);  
 f.close();
}

// C++
int main() {
 string* s = new string("hello " + name);
 ofstream* f = new ofstream("file.txt");
 *f << *s;  
 delete s;  
 delete f;
}

garbage collected

manual cleanup

garbage collected

manual cleanup

manual cleanup
manual cleanup

Observation: C++ handles different
resource types more consistently

ofstream destructor calls close!

Heap vs. File# Python
s = "hello " + name  
f = open("file.txt", "w")  
f.write(s)  
f.close()

// Java
public static void main(String[] args) throws IOException {
 String s = new String("hello " + name);
 BufferedWriter f = new BufferedWriter( 
 new FileWriter("file.txt")  
);
 f.write(str);  
 f.close();
}

// C++
int main() {
 string* s = new string("hello " + name);
 ofstream* f = new ofstream("file.txt");
 *f << *s;  
 delete s;  
 delete f;
}

garbage collected

manual cleanup

garbage collected

manual cleanup

manual cleanup
manual cleanup

Observation: C++ releases
memory back sooner

right now

eventually

eventually

Heap vs. File# Python
s = "hello " + name  
f = open("file.txt", "w")  
f.write(s)  
f.close()

// Java
public static void main(String[] args) throws IOException {
 String s = new String("hello " + name);
 BufferedWriter f = new BufferedWriter( 
 new FileWriter("file.txt")  
);
 f.write(str);  
 f.close();
}

// C++
int main() {
 string* s = new string("hello " + name);
 ofstream* f = new ofstream("file.txt");
 *f << *s;  
 delete s;  
 delete f;
}

garbage collected

leak!

garbage collected

leak!

leak!
leak!

Observation: exceptions make
resource management trickier!

exception!

exception!

exception!

with, finally, destructor# Python
s = "hello " + name  
with open("file.txt", "w") as f:  
 f.write(s)

// Java
public static void main(String[] args) throws IOException {
 String s = new String("hello " + name);
 try (BufferedWriter f = new BufferedWriter(...)) {
 f.write(str);  
 }
}

// C++
int main() {
 auto s = string(hello " + name);
 auto f = ofstream("file.txt");
 f << s;
}

Observations:
• string and ofstream can be on stack
• string destructor calls delete on char array
• ofstream destructor calls close on file handle

"with" closes file for us

"try with resources" closes file for us ("finally" in older Java code)

Lifetime// C++
class PrimeWriter {
 ofstream file{"primes.txt"};
 int prime{2};
public:
 void WriteNext() {
 file << prime << "\n";
 // TODO: find next prime...
 }
};

int main() {
 PrimeWriter pw;
 pw.WriteNext();
} pw removed from stack, PrimeWrite destructor called

and ofstream destuctor called (closing primes.txt)

Observation: destructor pattern is
more general than a "with resources"

pattern because resource lifetime doesn't
always correspond to a block of code

RAII Resource Management
Resource Acquisition Is Initialiation

Ideas
• every resource is owned by an object
• acquire resource: constructor
• release resource: destructor
• resource is held for duration of object's lifetime

for example, opening a file init => constructor
(open the file in the constructor)

RAII Resource Management
Resource Acquisition Is Initialiation

Ideas
• every resource is owned by an object
• acquire resource: constructor
• release resource: destructor
• resource is held for duration of object's lifetime

for example, opening a file init => constructor
(open the file in the constructor)

MyClass obj; // global

class OtherClass {
 MyClass obj;
}

void f() {
 MyClass obj;
}

void f() {
 {
 MyClass obj;
 ...
 }
 ...
}

lifetime: until f returns

lifetime: this block of code

lifetime: until program exits

lifetime: same as that of OtherClass

vector<MyClass> vec{MyClass(...), ...};
lifetime: until vector is released, cleared, resized, etc.

Outline
Worksheet and TopHat

Resources

Unique Pointers

Demos
• Unique Pointers
• File I/O

Shared Pointers

Demos

Unique Pointers

Idea
• assume we're the only pointer to an object
• then we can automatically delete it when done!
• prevents you from making common programming mistakes (double free, leak)

class unique_ptr {
 int* ptr;
 unique_ptr(int* ptr) : ptr(ptr) {}
 ~unique_ptr() {
 if (ptr)  
 delete ptr;
 }  
 // do NOT allow copying (whole point is to not have  
 // two pointers to same object)  
 // DO allow move: a new pointer can point to the  
 // object if the old pointer is set to nullptr
}

simplified unique_ptr to an integer
(actual implementation is generic)

only member is ptr. sizeof(unique_ptr) == sizeof(ptr)

Access

auto coord1 = unique_ptr<Coord>(new Coord(3, 4));
auto coord2 = new Coord(5, 6));  
 

cout << coord1.ptr->x << "\n";  
cout << coord2->x << "\n";

accesing through a pointer would be annoying!

Access

auto coord1 = unique_ptr<Coord>(new Coord(3, 4));
auto coord2 = new Coord(5, 6));  
 

cout << coord1->x << "\n";  
cout << coord2->x << "\n";

// overloading -> and *
class unique_ptr {  
 Coord* ptr;
 Coord* operator->() {  
 return ptr;  
 }  
 Coord& operator*() {
 return *ptr;
 }
 ...
}

after operator->, perform another
-> on the returned result

return reference so we can modify it

Creation

auto coord1 = unique_ptr<Coord>(new Coord(3, 4));
auto coord2 = make_unique<Coord>(3,4);

Advantages of make_unique
• only mention "Coord" once
• with smart pointers, we can nearly always avoid "new" -- avoiding it here lets

us search to identify possible bugs
• exception safety

Exception Safety

f(unique_ptr<A>(new A), unique_ptr(new B))

Possible order
• new A
• new B
• unique_ptr<A> constructor
• unique_ptr constructor

if we have an exception here, A leaks!

Outline
Worksheet and TopHat

Resources

Unique Pointers

Demos
• Unique Pointers
• File I/O

Shared Pointers

Demos

Outline
Worksheet and TopHat

Resources

Unique Pointers

Demos
• Unique Pointers
• File I/O

Shared Pointers

Demos

Shared Pointers
Unique Pointers

• wrap a raw pointer inside a unique_ptr
• when the unique_ptr goes out of scope (e.g., it was on the stack),

automatically call delete on the raw pointer
• no leaks/double delete because we take care (e.g., deleting copy constructors)

to prevent multiple pointers refer to the same address!

What if we want multiple pointers to the same address?

Observations:
• cannot delete while there are still active pointers (corruption!)
• cannot delete later than that (leak!)
• cannot delete more than one (double free!)

Solution: maintain a reference count that indicates how many active pointers there
are. When it goes to zero, free the object!

Unique Pointers

object
ptr

Shared Pointers

object
ptr
cb

count=1

unique_ptr shared_ptr

control block

Unique Pointers

object
ptr

Shared Pointers

object
ptr
cb

count=2

unique_ptr shared_ptr

control block

ptr
cb

shared_ptrcannot copy unique_ptr!

copying a shared_ptr increments the
reference count in the control block

Unique Pointers

object
ptr

Shared Pointers

object
ptr
cb

count=1

unique_ptr shared_ptr

control block

ptr
cb

shared_ptrdestroying the unique_ptr
deletes the object

destroying a shared_ptr subtracts one
from the reference count

Unique Pointers

object
ptr

Shared Pointers

object
ptr
cb

count=0

unique_ptr shared_ptr

control block

ptr
cb

shared_ptr

delete object when the reference
count goes to zero

make_shared

object
ptr
cb

count=1

shared_ptr

control block

make_shared advantages
• concise syntax
• exception safe
• cache-friendly layout (control block and associated object adjacent)

Cycles

object
ptr
cb

count=2

shared_ptr

control block

object

count=1
control block

shared_ptr shared_ptr

Cycles

object
ptr
cb

count=1

shared_ptr

control block

object

count=1
control block

shared_ptr shared_ptr

shared_ptr's are not as advanced as an actual garbage collector!
• GC can detect "islands" of related objects, shared_ptrs cannot
• it's your job (e.g., by designing references to avoid loops, or writing extra

cleanup code)

Outline
Worksheet and TopHat

Resources

Unique Pointers

Demos
• Unique Pointers
• File I/O

Shared Pointers

Demos

