[368] Smart Pointers

Tyler Caraza-Harter

Outline

Worksheet and TopHat
Resources
Unique Pointers

Demos

* Unique Pointers
 FRlel/O

Shared Pointers

Demos

What will you learn today?

Learning objectives
® manage resources using the RAIl pattern
® write code that uses smart pointers (and avoids regular pointers)
® describe how shared_pointers using reference counting

® |dentify scenarios where share_pointers leak

Outline

Worksheet and TopHat
Resources
Unique Pointers

Demos

* Unique Pointers
 FRlel/O

Shared Pointers

Demos

Resources

Examples of resources
* stack memory
* heap memory
e file handles
e sockets
* web tokens
e threads
* processes
e J|ocks

Goal: don't retain resources we're not using (e.g.,, don't leak memory), but don't
release resources we're still using!

Resources

Examples of resources
* stack memory <—— release upon function return (Java, Python, C++)
* heap memory
* file handles
* sockets
* web tokens
* threads
* processes
* Jocks

Goal: don't retain resources we're not using (e.g.,, don't leak memory), but don't
release resources we're still using!

Resources

Examples of resources

stack memory

heap memory «—— garbage collector (Java, Python), or it's your job (C++)
file handles

easlier, fewer bugs less overhead
sockets release sooner
web tokens more "online”
threads
Processes
locks

Goal: don't retain resources we're not using (e.g.,, don't leak memory), but don't
release resources we're still using!

Resources

Examples of resources
* stack memory
* heap memory

* filehandles |« j¢g your job (Python, Java, and C++)
* sockets

e web tokens

* threads can still leverage C++ destructors

* Processes

e locks Python+Java have worse primitives, like try/finally, with statement

Goal: don't retain resources we're not using (e.g.,, don't leak memory), but don't
release resources we're still using!

Heap vs. File

s = "hello " + name garbage collected
f = open("file.txt", "w") Jeaks!
f.write(s)

public static void main(String[] args) throws IOException {
String s = new String("hello " + name); garbage collected
BufferedWriter f = new BufferedWriter(|ezks!
new FileWriter("file.txt")
) i

f.write(str);

}

int main() {
string* s new string("hello + name); leaks!

ofstream* f = new ofstream("file.txt"); leaks!
*f << *g;

s = "hello " + name garbage collected Heap VS. F|Ie

f = open("file.txt", "w")
f.write(s)
f.close() manual cleanup

public static void main(String[] args) throws IOException {
String s = new String("hello " + name); garbage collected
BufferedWriter £ = new BufferedWriter(
new FileWriter("file.txt")
) i
f.write(str);
f.close(); manual cleanup

}

int main() {
string* s = new string("hello + name);
ofstream* f = new ofstream("file.txt");
*f << *g;
delete s; manual cleanup
delete f; manual cleanup ofstream destructor calls close!

s = "hello " + name garbage collected Heap VS. F|Ie

f = open("file.txt", "w") eventually

f.write(s)
f.close() manual cleanup

public static void main(String[] args) throws IOException {
String s = new String("hello " + name); garbage collected
BufferedWriter £ = new BufferedWriter eventually
new FileWriter("file.txt")
) i
f.write(str);
f.close(); manual cleanup

}

int main() {
string* s = new string("hello + name);
ofstream* f = new ofstream("file.txt");
*f << *g;
delete s; manual cleanup right now
delete f; manual cleanup

s = "hello " + name garbage collected HeaP VS. F|Ie

f = open("file.txt", "w")
f.write(s)exception!
f.close() leak!

public static void main(String[] args) throws IOException {
String s = new String("hello " + name); garbage collected
BufferedWriter £ = new BufferedWriter(
new FileWriter("file.txt")
) i
f.write(str) ;exception!
f.close(); leak!

}

int main() {
string* s = new string("hello + name);
ofstream* f = new ofstream("file.txt");
*f << *s; exception!
delete s; leak!
delete f£f; leak!

S = "hello " + name with, finally, destructor

with open("file.txt", "w") as f:

f.write(s |
()'thH'ckBesfﬂefbrLB

public static void main(String[] args) throws IOException {
String s = new String("hello " + name);

try (BufferedWriter f = new BufferedWriter(...)) {
f.write(str);

}

) "try with resources” closes file for us (“finally" in older Java code)

int main() {

auto s = string(hello " + name);
auto £ = ofstream("file.txt");
f << s;

* string and ofstream can be on stack
* string destructor calls delete on char array
* ofstream destructor calls close on file handle

// C++ Lifetime
class PrimeWriter {

ofstream file{"primes.txt"};
int prime{2};
public:
void WriteNext() {
file << prime << "\n";
// TODO: find next prime...
+

¥ ’ Observation: destructor pattern is
more general than a "with resources’

pattern because resource lifetime doesn't
always correspond to a block of code

int main() {
PrimeWriter pw;
pw.WriteNext();

}

pw removed from stack, PrimeWrite destructor called
and ofstream destuctor called (closing primes.txt)

RAIl Resource Management

Resource Acquisition s Initialiation

|deas
* every resource Is owned by an object
* acquire resource: constructor
* release resource: destructor
* resource Is held for duration of object’s lifetime

RAIl Resource Management

Resource Acquisition s Initialiation

|deas

every resource Is owned by an object

acquire resource: constructor
release resource: destructor

resource Is held for duration of object's lifetime

void f() {
MyClass obj;

)

void () {

{

MyClass obj;

MyClass oby; // global

class OtherClass {
MyClass obj;

)

vector<MyClass> vec{MyClass(...), ..};

Outline

Worksheet and TopHat
Resources
Unique Pointers

Demos

* Unique Pointers
 FRlel/O

Shared Pointers

Demos

Unique Pointers

|dea
* assume we're the only pointer to an object
* then we can automatically delete it when done!
* prevents you from making common programming mistakes (double free, leak)

class unique ptr {
int* ptr; only member Is ptr. sizeof(unique_ptr) == sizeof(ptr)
unique ptr(int* ptr) : ptr(ptr) {}
~unique ptr() {
1f (ptr)
delete ptr;

simplified unique_ptr to an integer
(actual implementation Is generic)

// do NOT allow copying (whole point is to not have
// two pointers to same object)

// DO allow move: a new pointer can point to the

// object if the old pointer is set to nullptr

Access

auto coordl = unique ptr<Coord>(new Coord(3, 4));
auto coord2 = new Coord(5, 6));

accesing through a pointer would be annoying!

cout << coordl << "\n";
cout << coord2 << "\n";

Access

auto coordl = unique ptr<Coord>(new Coord(3, 4));
auto coord2 = new Coord(5, 6));

cout << coordl << "\n"
cout << coord2 << "\n"

we we

// overloading -> and *
class unique ptr {

Coord* ptr;
{
return ptr;
}
{
return *ptr;
}

Creation

auto coordl = unique ptr<Coord>(new Coord(3, 4));

auto coord? make unique<Coord>(3,4);

Advantages of make_unique
* only mention "Coord" once

* with smart pointers, we can nearly always avoid "new" -- avoiding it here lets
us search to identify possible bugs

* exception safety

Exception Safety

f (unique ptr<A>(new A), unique ptr(new B))

Possible order
e new A

* newbB < if we have an exception here, A leaks!
* unique_ptr<A> constructor
* unique_ptr constructor

Outline

Worksheet and TopHat
Resources
Unique Pointers

Demos

* Unique Pointers
 Flel/O

Shared Pointers

Demos

Outline

Worksheet and TopHat
Resources
Unique Pointers

Demos

* Unique Pointers
 FRlel/O

Shared Pointers

Demos

Shared Pointers

Unique Pointers
* wrap a raw pointer inside a unique_ptr

* when the unique_ptr goes out of scope (e.g, it was on the stack),
automatically call delete on the raw pointer

* no leaks/double delete because we take care (e.g., deleting copy constructors)
to prevent multiple pointers refer to the same address!

What if we want multiple pointers to the same address?

Observations:
* cannot delete while there are still active pointers (corruption!)
* cannot delete later than that (leak!)
* cannot delete more than one (double free!)

Solution: maintain a reference count that indicates how many active pointers there
are. When It goes to zero, free the object!

Unique Pointers Shared Pointers

unique_ptr shared_ptr
t t
P g object P g object
cb \
\A control block

count=|

Unique Pointers

unique_ptr

ptr

cannot copy unigue_ptr!

Shared Pointers

shared_ptr

ptr
cb \

control block
count=2

shared_p

ptr /. /

cb/

copying a shared_ptr increments the
reference count in the control block

Unique Pointers Shared Pointers

un shared_ptr
T
> > -
cb \
\A control block

count=|
Sx

Unique Pointers Shared Pointers

un shared
o

control block

count=0
Sx

make shared

control block

shared_ptr /
/

ptr 7

cb —

count=|

make_shared advantages
* concise syntax
* exception safe
* cache-friendly layout (control block and associated object adjacent)

Cycles

control block control block

count=|

shared_ptr

ptr //

cb —

Cycles

control block control block

count=|

shared_ptr's are not as advanced as an actual garbage collector!
* GC can detect "islands” of related objects, shared_ptrs cannot

* It's yourjob (e.g, by designing references to avoid loops, or writing extra
cleanup code)

Outline

Worksheet and TopHat
Resources
Unique Pointers

Demos

* Unique Pointers
 FRlel/O

Shared Pointers

Demos

