
[544] PyTorch Basics
Tyler Caraza-Harter

Learning Objectives

• deploy JupyterLab with PyTorch inside a Docker container
• compare different numeric types in terms of space

requirements, range, and precision
• perform calculations on PyTorch tensors
• formulate models as functions that multiply input data by

parameters

Outline
PyTorch Overview

Numeric Types

Coding Demos
• numeric types
• calculations: element wise, sigmoid, matrix multiplication, linear models
• optimization
• troubleshooting

PyTorch Uses

Floating point operations
• scientific computing, machine learning
• matrices, linear algebra
• seamless: on CPU or GPU
• distributed computing

Optimization
• y = f(x)
• which x makes y smallest? (or largest?)

Machine learning:
• what parameters yield best performance metrics for some data?
• simple example: 

y = b * x + c what b and c parameters give the best fit?
• deep learning 

y = sigmoid(sigmoid(data @ matrix1 + bias1) @ matrix2 + bias2)

1

2

3

Setup
See snippets:

https://tinyurl.com/4pn9db3n

https://tinyurl.com/4pn9db3n

Outline
PyTorch Overview

Numeric Types

Coding Demos
• numeric types
• calculations: element wise, sigmoid, matrix multiplication, linear models
• optimization
• troubleshooting

Python Numeric Types (Built In)
https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

Python Types
• ints

➡ no maximum/minimum size (Python is unusual in this way)
➡ bigger/smaller values => more bits necessary

• floats
➡ usually 64 bits ("double precision"; 32 bits would "single precision")
➡ like exponential notation (1.23 x 102), but in binary instead of decimal
➡ min/max size. Inf, -Inf, NaN have special bit combinations

• complex
➡ real and imaginary represented as two floats
➡ not covered in 544

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

Other Numeric Types

Common numeric types that (a) CPUs can directly manipulate and (b) PyTorch supports
• integers: uint8, int8, int16, int32, int64
• floats: float16, float32, float64
• names specify bits, float vs. int, and signed ("u" => unsigned)
• dtype (data type)

import torch

x = torch.tensor(3.14, dtype=torch.float16)

print(x.element_size()) # 2 bytes (instead of 8)

Tradeoffs: precision, range, memory usage

Python floatPyTorch float16

Hardware Support
... ...
MULPD Multiply Packed Double Precision Floating-Point Values
MULPS Multiply Packed Single Precision Floating-Point Values
MULSD Multiply Scalar Double Precision Floating-Point Value
MULSS Multiply Scalar Single Precision Floating-Point Values
... ...

https://www.felixcloutier.com/x86/

Hypothetical Scenario: all the ints in your dataset fit nicely in 3 bytes. Should you
come up with a new integer byte representation?

Pro: utilize memory more efficiently based on your use case

Con: your CPU won't have instructions for working with this new type. Solutions:
• perform the multiplication in software instead of hardware (slow!)
• keep the data in your 3-byte format, but convert to a regular 4-byte it on an

as-needed basis to do calculations (slow!)

Common to have one form for computation, another for storage, messages, etc.

https://www.felixcloutier.com/x86/mulpd
https://www.felixcloutier.com/x86/mulps
https://www.felixcloutier.com/x86/mulsd
https://www.felixcloutier.com/x86/mulss

Outline
PyTorch Overview

Numeric Types

Coding Demos
• numeric types
• tensors
• calculations: element wise, sigmoid, matrix multiplication
• linear models

