
[544] PyTorch Optimization
Tyler Caraza-Harter

Learning Objectives

• write a PyTorch optimization loop to find inputs that
minimize/maximize an output

• frame model training as an optimization problem minimizing
loss

• prepare datasets using DataSet and DataLoader from
sources like CSVs

Outline
Optimization

• Calculations as DAGs
• Iterative approach

Machine Learning
• Brief background
• Machine Learning as Optimization

PyTorch can calculate how small changes in one variable in the DAG impacts another.
Example: if b increases by 0.001, z will decrease by 0.002. The gradient of z with respect to b is -2.

Optimization: if we want z to be large, decreasing b a little (how much?) is probably a good idea.

a = torch.tensor(3.0)
b = torch.tensor(4.0)
c = torch.tensor(5.0)

z = 2 * (a - b) + c

Making a small improvement

Scenario
• We want z to be large
• We're allowed to change b (but to what?)

a = torch.tensor(3.0)
b = torch.tensor(4.0, requires_grad=True)
c = torch.tensor(5.0)

z = 2 * (a - b) + c

Tracking gradients

gradient (slope at a position)
at x=1 is 2

a = torch.tensor(3.0)
b = torch.tensor(4.0, requires_grad=True)
c = torch.tensor(5.0)

z = 2 * (a - b) + c
z.backward()
b.grad

Calculating gradients

fill .grad for all input tensors that we're tracking

-2 (because that's the z-over-b slope at the current location)

a = torch.tensor(3.0)
b = torch.tensor(4.0, requires_grad=True)
c = torch.tensor(5.0)

z = 2 * (a - b) + c
z.backward()
b.grad

z = 2 * (a - b) + c
z.backward()
b.grad

Accumulating gradients

repeat

-2

-4

careful, gradients accumulate in .grad everytime you call backward
(has uses, but not usually what we want)

a = torch.tensor(3.0)
b = torch.tensor(4.0, requires_grad=True)
c = torch.tensor(5.0)

optimizer = ????

z = 2 * (a - b) + c
z.backward()
b.grad

optimizer.step()

Taking steps

-2

step() will make b a little bigger or a little smaller,
depending on gradient, and whether we're minimizing or maximizing

a = torch.tensor(3.0)
b = torch.tensor(4.0, requires_grad=True)
c = torch.tensor(5.0)

optimizer = torch.optim.SGD([b], maximize=True,
 lr=0.1)

z = 2 * (a - b) + c
z.backward()
b.grad

optimizer.step()

Stochastic Gradient Descent (SGD) Optimizer

-2

can change b
what z t

o be big

a = torch.tensor(3.0)
b = torch.tensor(4.0, requires_grad=True)
c = torch.tensor(5.0)

optimizer = torch.optim.SGD([b], maximize=True,
 lr=0.1)

z = 2 * (a - b) + c
z.backward()
b.grad

optimizer.step()

Learning rate

-2

learning rate specifies how
much step() should change b

b += b.grad * lr
 -2 * 0.1 = -0.2

(use -= if minimizing)

now b is 3.8

a = torch.tensor(3.0)
b = torch.tensor(4.0, requires_grad=True)
c = torch.tensor(5.0)

optimizer = torch.optim.SGD([b], maximize=True,
 lr=0.1)

z = 2 * (a - b) + c
z.backward()
b.grad

optimizer.step()
optimizer.zero_grad()

b.grad

Clearing gradients (to prep for another step)

-2

0

a = torch.tensor(3.0)
b = torch.tensor(4.0, requires_grad=True)
c = torch.tensor(5.0)

optimizer = torch.optim.SGD([b], maximize=True,
 lr=0.1)

for epoch in range(10):
z = 2 * (a - b) + c
z.backward()

optimizer.step()
optimizer.zero_grad()

print(b)

Iteratively improving

many small improvements have been made

each iteration of optimization
is called an "epoch"

Demos...

Outline
Optimization

• Calculations as DAGs
• Iterative approach

Machine Learning
• Brief background
• Machine Learning as Optimization

Machine Learning, Major Ideas
Categories of Machine Learning:

• Reinforcement learning: agent makes series of actions to maximize reward
• Unsupervised learning: looking for general patterns
• Supervised learning: train models to predict unknowns (today)

Models are functions that return predictions:

def my_model(some_info):
 ...
 return some_prediction

Example:

def weather_forecast(temp_today, temp_yesterday):
 ...
 return temp_tomorrow

categorical (A, B, C) is "classification"

numeric (1, 2, 3) is "regression"

Machine Learning, Major Ideas
Categories of Machine Learning:

• Reinforcement learning: agent makes series of actions to maximize reward
• Unsupervised learning: looking for general patterns
• Supervised learning: train models to predict unknowns (today)

Models are functions that return predictions:

def my_model(some_info):
 ...
 return some_prediction

Example:

def weather_forecast(temp_today, temp_yesterday):
 ...
 return temp_tomorrow

computation usually involves some
calculations (multiply, add) with various

numbers (parameters). Training is finding
parameters that result in good predictions

for known training data

Goal: Learning from Data

how can the cases where we DO know y help
us predict the cases where we do not?

Split Known Cases

random split

train

validation

test

Train Models

train

validation

test

algorithm A algorithm B

fit/train some models

model A model B

Predict with Models

train

validation

test

make predictions

model A model B

8
3
5

25
2
15

Measure Loss

train

validation

test

which model
predicts better?

model A model B

8
3
5

25
2
15

y p err err^2

7 8 1 1

3 3 0 0

3 5 2 4

MSE (mean squared error)
is 5/3 = 1.666

Loss functions measure how bad predictions
are (MSE is one possible metric)

Choose best model

train

validation

test

which model
predicts better?

model A model B

8
3
5

25
2
15

winner!

How does the winner do on something new?

train

validation

test
model A

10
3
3

winner!

how good does the
chosen model do
on the test data?

models that do good on train data but bad
on validation/test data have "overfitted"

why might the winning model do worse on
the test data than the validation data?

Deploy!

train

validation

test
model A

8
7
1

winner!

deploy the model. Use it for
predicting real unknowns!

Outline
Optimization

• Calculations as DAGs
• Iterative approach

Machine Learning
• Brief background
• Machine Learning as Optimization

x p = x @ weight + bias

x and y are known (these are matrices/vectors).
what should weight and bias (parameters) be?

def model(data):
 return data @ weight + bias

p = model(x)
loss = MSE(y, p)

weight

bias
y

loss = MSE(y, p)

MSE (means squared error) measures how
different predictions are from real values, so we
want small loss (optimization).

If gradient of loss with respect to weight is
positive, then decrease weight.

update
params

scan
epoch 0

update
params

scan
epoch 1

update
params

scan
epoch 2 ...

gradient descent. slow (consider all data each update), and data might not fit in RAM

x p = x @ weight + bias

weight

bias
y

loss = MSE(y, p)

update

scan
epoch 0

scan
epoch 1

scan
epoch 2 ...

stochastic gradient descent. shuffle each time, process in small batches that fit in memory

shuffle shuffle

update

update

update

update

update

update

update

update

x p = x @ weight + bias

weight

bias
y

loss = MSE(y, p)

Demos...

