
[544] Caching
Tyler Caraza-Harter

Learning Objectives

• describe the cache hierarchy
• trace through access patterns with LRU and FIFO policies
• calculate cache performance metrics

Outline
Challenge: Latency

Cache Hierarchy
• CPU, RAM, SSD, Disk, Network
• Tradeoffs

What data should be cached?
• manual
• expiration
• eviction policies: random, FIFO, LRU

Practice

CPU and RAM

CPU RAM

3r1:
4r2:

r3: 0

registers are
like variables

built into the CPU

CPU clock has
billions of cycles

per second

CPU and RAM

CPU RAM

3r1:
4r2:

r3: 7

instruction:
r3 = r1 + r2

(fast)

Load and Store

CPU RAM

3r1:
4r2:

r3: 7

6

2

0

challenge: if we want to add some
numbers stored in RAM, we need to
load before adding and store after

Latency

CPU RAM

6r1:
4r2:

r3: 7

6

2

0

source: visuals, estimates

about 60ns, or 200 cycles

very slow, but not long enough to
switch to a different process...

Latency

CPU RAM

6r1:
4r2:

r3: 7

6

2

0

source: visuals, estimates

about 60ns, or 200 cycles

"how much time" is a latency measure.
Throughput (bytes/second) would depend on how

many loads like these we can do simultanously.

Cache

CPU
RAM6r1:

4r2:
r3: 7

6

2

0

source: visuals, estimates

Idea: CPUs can have a small/fast memory
built in for data that is accesses frequently

Cache
copies of "hot" data

Latency Measurements

Metrics
• average latency
• median latency
• "tail" latency (99th percentile, 99.9th percentile, etc).

Which metrics do we expect caching to help with the most?

Outline
Challenge: Latency

Cache Hierarchy
• CPU, RAM, SSD, Disk, Network
• Tradeoffs

What data should be cached?
• manual
• expiration
• eviction policies: random, FIFO, LRU

Practice

Cache Hierarchy
faster/smaller

bigger/slower

Example: Intel Xeon Platinum 9282 (2019)
• L1: 64 KB
• L2: 1 MB
• L3: 77 MB

(network in general)

(SSD/HDD)

(RAM)

Cache Hierarchy
faster/smaller

bigger/slower

about how big is the L3 cache?
what is the latency for an L3

cache access?

(network in general)

(SSD/HDD)

(RAM)

Resource Tradeoffs

File system caches file data in RAM
• use memory
• avoid storage reads

Browser caches recently visited page as file
• uses storage space
• avoid network transfers

Python dictionary caches return values in a dict (key=args, val=return)
• uses memory space
• avoid repeated compute

cache = {}
def f(x):
 if not x in cache:
 cache[x] = g(x)
 return cache[x]

Outline
Challenge: Latency

Cache Hierarchy
• CPU, RAM, SSD, Disk, Network
• Tradeoffs

What data should be cached?
• manual
• expiration
• eviction policies: random, FIFO, LRU

Practice

Manual Caching: Spark Example

spark_df = ???? # not usually in memory

spark_df.cache() # put it in memory

use spark_df for a lot of calculations

spark_df.unpersist() # free up memory

we'll be spending lots of time on Spark later in the semester

Expiration: Browser Example

course
website

visit

page

Expiration: Browser Example

course
website

SSD
(browser cache)

visit

page

Expiration: Browser Example

course
website

visit

page

visit
page

SSD
(browser cache)

Expiration: Browser Example

course
website

visit

page

visit
page

SSD
(browser cache)

miss

hit

Expiration: Browser Example

course
website

visit

page

visit
page

SSD
(browser cache)

visit

page

a day passes...

Expiration: Browser Example

course
website

visit

page

visit
page

SSD
(browser cache)

visit

page

a day passes...

stale data (past expiration) is deleted (or re-valitaded).
SSD is large so freshness is more important than space.

Outline
Challenge: Latency

Cache Hierarchy
• CPU, RAM, SSD, Disk, Network
• Tradeoffs

What data should be cached?
• manual
• expiration
• eviction policies: random, FIFO, LRU

Practice

Cache Policies

When to load data to a cache?
• whenever we read something, add it
• special exception: programmer knows it will never be read again

- for example, F_NOCACHE option in Linux

When to evict data to a cache? Several policies
• random

- select any entry at random for eviction
• FIFO (first in, first out)

- evict whichever entry has been in the cache the longest
• LRU (least recently used)

- evict whichever entry has been used the least recently

Worksheet

Outline
Challenge: Latency

Cache Hierarchy
• CPU, RAM, SSD, Disk, Network
• Tradeoffs

What data should be cached?
• manual
• expiration
• eviction policies: random, FIFO, LRU

Practice

