' 544] Fle Formats

Tyler Caraza-Harter

Learning Objectives

« describe different file formats in terms of orientation,
encoding, compression, and schemas

* write code to use parguet files

» differentiate between transactions workloads and analytics
workloads

* explain the motivation for using an ETL (extract transform
load) process to copy data from an transactions processing
system to an analytics processing system

File systems let us give names to sequences of bytes (files) and hierarchically organize
those files (via directories). We usually want some structure for those bytes.

approach [file formats approach 2: DBs

some data some data

|

!

block device, another FS, etc

Outline

File Formats

CSv Parquet

...

orientation row column
encoding text binary
compression none snappy
schemas inferred explicit

Demos

Databases

File Layout

Goals
« efficient input/output from storage (large enough reads/writes, sequential accesses)
* minimize parsing/deserialization computation time

Assumptions

* many file systems will try to map consecutive bytes of a file to consecutive blocks on a
storage device (but note that in some cases sequential file I/O becomes random disk 1/O)

* need to clarify assumptions about how code will access the data (for example, one whole
column? a row at a time?)

ghcnd-stations.txt

good: just read the one
block containing the row

bad: need to read everything
to access any one column

File Layout

Goals
« efficient input/output from storage (large enough reads/writes, sequential accesses)
* minimize parsing/deserialization computation time

Assumptions

* many file systems will try to map consecutive bytes of a file to consecutive blocks on a
storage device (but note that in some cases sequential file I/O becomes random disk 1/O)

* need to clarfy assumptions about how code will (for example, one whole
column? a row at a time?)

Major access patterns

* fransactions processing: reading/changing a row (or few rows) as needed by an application
(note: "transaction” has other meanings for databases as well -- more later...)

* analytics processing: computing over many rows for specific columns

Row-Oriented vs. Column-Oriented Layout

coll col2 col3
.......... |5A
_________ 268
_________ 37C
_________ 4 8D

row-oriented file: [| 5A26B37C48D

col-orientedfile: |1 234567 8ABCD

position in file

Row-Oriented vs. Column-Oriented Layout

coll | col2 = col3

| S A
_________ 268
_________ 37C
_________ 4 8D

row-oriented file:

col-oriented file:

| 5A26B37C48D

1123 4|56 78ABCD

position in file

fast

slow

transactional access pattern

Row-Oriented vs. Column-Oriented Layout

coll col2 col3
.......... |5A
_________ 268
_________ 37C
_________ 4 8D

row-oriented file: |[||I5A26 B|3l7 Cl4/8 D slow

analytics access pattern

col-oriented file: (| 234567 8ABCD fast

position in file

Row-Oriented vs. Column-Oriented Layout

coll | col2 @ col3

| S A
_________ 268
_________ 37C
_________ 4 8D

row-oriented file:

col-oriented file:

| 5A26B37C48D

123456 78ABCD

position in file

SV

Parquet

Demo: CSV vs. parguet...

Outline

File Formats

CSv Parquet

...

orientation row column
encoding | text | binary
compression none snappy
schemas inferred explicit

Demos

Databases

Text vs. Binary

1234678900
/ | \
string: parquet inté64: parquet int32;

27 bytes 2 bytes 27 bytes

Text vs. Binary

1234678900
/ | \
string: parquet inté64: parquet int32;

|0 bytes 8 bytes 4 bytes

Text vs. Binary

1234678900
/ | \
string: parquet inté64: parquet int32;
|0 bytes 8 bytes 4 bytes
W

| T~

parquet int64: parquet int32:
8 bytes 4 bytes

protobuf Int32/64:
| byte

more compute work necessary to get the
numbers ready for calculations on the CPU

Outline

File Formats

CSv Parquet

...

orientation row column
encoding | text | binary
compression none snappy
schemas inferred explicit

Demos

Databases

Compression

|dea: avoid repeating yourself
* repetitive datasets are more compressible
* more compute time finding repetition => better compression ratio (original/compressed size)

Example: snappy compression (parquet default):

N

\
1210 W Dayton‘ St, Madison, WI‘; 1202 W Johnson‘

iteral iteral iteral copy

"[Snappy] does not aim for maximum compression, or compatibility with any other
compression library; instead, it aims for very high speeds and reasonable compression.”

Snappy documentation
* https://github.com/google/snappy
* https://github.com/google/snappy/blob/main/format_description.txt

Challenge: Small Updates

N

1210 W Dayton‘ St, Madison, WI‘; 1202 W Johnson‘ \

iteral iteral iteral copy

can't just update this first address in isolation
(need to rewrite other parts of the file)

Compression Window/Block

"the current Snappy compressor works in 32 kB blocks and
does not do matching across blocks"

row-oriented file: || SA26E37A48

col-oriented file: |1 234567 8A B A

position in file

will compression generally work better for row-oriented
formats or column-oriented formats?

Size vs. Compute Tradeoff

* SNappy Vs. gzip
* measure compute time with %%time

* measure size with "ls -lh"

Time measurements
* wall-clock time: real-world time that passes
« CPU time:time spent running on CPU
* wall clock time > CPU time (maybe /O time dominates)
 CPU time > wall clock time (maybe multiple cores used)

Outline

File Formats

CSv Parquet

...

orientation row column
encoding text binary
compression none snappy

schemas | inferred explicit
Demos

Databases

Schemas

Designing
Data-Intensive
Applications

Schema: "A description of the structure of some data,
including 1ts fields and datatypes.” -- Kleppmann

schema specified as a dict

CSVs:
* inthe file, everything in text /
* pdread_csv('file.csv', dtype={"col | ": str; "col2" int, ..}) # specify schema (annoying)
* pdread_csv('file.csv', dtype=None) # infer schema (slow, error prone!)

parquet files:
* type specification is part of the file
* no need for very slow schema inference

Outline

File Formats

Demos...

Databases

Outline

File Formats

Demos

Databases
* tables and queries
* architecture
* transactions vs. analytics

tbl_state

Tab I (SN tbl_purpose code | abbr | name

..

id i loan_purpose 1 AL iAlbama
1 Homepurchase 2 {AK iAlaska
tb]_action 2 Homeimprovement 4 AZ Arzona

3 :Refinancing 5 AR ‘Arkansas
idactiontaken 6 _CA__ California
1 iLoan originated 8 iCO iColorado
2 Application approved but not accepted " 9 TCT TiConnecticut
3 | Application denied by financial institution 10 DE Delaware
"4 7 Application withdrawn by applicant T
5 i File closed for incompleteness string
6 Loanpurchased by the institution tbl_loan
7 i Preapproval request denied by financial

8 i Preapproval request approved but not accepted __'_9'____,_PH_'TE?_?E_,_?_FF_'_‘_?__"__LE'_‘?_FE_L_?_'_T?_‘_’__‘%'_!?_t__,_[?_t_f‘: ________
' 1 i2 1 2 20000 :5.0
2 i1 i1 8 i é'db"d'c')'c')'""é"b """""
31 4 10 ¢ Zi"s'b'd'c')'d""é"i """""
Databases store a collection of tables -----------------
* schemas define the columns/types for each table int float

* |Ds/keys let us relate multiple tables
(for example, the first loan is in Alaska)

tbl_state

Queries tbl_purpose code | abbr | name

..

id : loan_purpose 1 (AL iAlabama

1 Homepurchase 2 {AK iAlaska

thl_action 2 Homeimprovement 4 AZ ‘Arizona

. 3 :Refinancing 5 _iAR iArkansas
id action taken 6 CA California

1 iLoan originated 8 i CO Colorado

2 iApplication approved but not accepted 7 9 T T Connecticut.

3 i Application denied by financial instituton 7 10 DE Delaware

...
...

------- tbl_loan

8 : Preapproval request approved but not accepted __'_9'____,_F_’_H'TE?_?E_,_?_FF_'_‘_?__"__LEF_‘T‘_FE_L_?_'_T?_‘_’__‘%'D_t__,{?_t_f‘t ________
o2 b2 120000 iS50
2ot 8 ...1300000:30
3 i1 4 10 1450000 3 2

...

...

Queries let us

* ask questions about the data
(like, what is the name of the state with "WI" as an abbreviation)

* make changes to the data
(like insert Puerto Rico as a row in tbl_state)

tbl_state

SQ L tbl_purpose code | abbr | name

..

id :loan_purpose 1 AL iAlabama
1 Homepurchase 2 {AK {Alaska
tbl_action 2 Homeimprovement 4 AZ Arizona
N 3 iRefinancing 5 {AR iArkansas
id actiontaken 6 | CA Caifornia
1 i Loan originated 8 iCO iColorado
2 Application approved but notaccepted 9 iCT Connecticut
3 iApplication denied by financial institution 10 iDE :Delaware
4 :Application withdrawn by applicant T
5 iFile closed for incompleteness
6 ' Loan purchased by the institution tbl_loan
7 : Preapproval request denied by financial
'8 I Preapproval request approved but not accepted . i_ 9'____,_P_E'_'T_F_’_?_?E_,_?_FF'_?__"__.E'_‘_‘?_F‘?_L_?_'_T?_‘_’_E'_T?_t__,_[?f‘f ________
' 1 2 1 2 20000 :5.0
211830000030 """""
Structure Query Language (SQL) 3141045000032
* most popular/famous query language -------------

* ask questions about the data: SELECT
* make changes to the data: ,

tbl_state

SQ L tbl_purpose code | abbr | name

..

id {loan_purpose A AL _[Alabama
1 Homepurchase 2 {AK {Alaska
tbl_action 2 Homeimprovement 4 AZ |Arizona
N 3 iRefinancing 5 {AR iArkansas
i actiontaken . 6 | CA California
1 iLoan originated 8 iCO iColorado
2 iApplication approved but notaccepted =~ 9 CT Connecticut
3 {Application denied by financial institution 10 DE Delaware
4 :Application withdrawn by applicant
5 iFile closed for incompleteness
6 |Loanpurchased by the institution tbl_loan
7 : Preapproval request denied by financial
'8 Preapproval request approved but not accepted . ! ?'____._PH_'TE?_?E_,_?_FF_'_‘_?__“__Lf‘_'_‘_‘?‘f_‘?_L_?_'_T?_‘_’__‘_‘_T?_t__,{?f‘f ________
| 1 i2 1 2 20000 5.0
211830000030 """""
Structure Query Language (SQL) 3141045000032
* most popular/famous query language -------------
* ask questions about the data: SELECT | | | | |
* make changes to the data: , ,
SELECT AVG(rate) FROM tbl_loan: analytics (calculate over many/all rows, few colums)

SELECT amount, rate FROM tbl_loan WHERE iId = 544; | 1 hcactions (working with whole row
INTO tbl_loan (...) VALUES (...); or few rows at a time)

Outline

File Formats

Demos

Databases
* tables and queries
* architecture
* transactions vs. analytics

Data Base Management Systems

Architecture: big picture of a system's example database architecture:
Components/subsystems Transport
q Cluster Client
7| Communication Communication
Databases manage all the resources I
we've learned about: Query Processor
* storage

Query Parser
° memaory

* network Query Optimizer

* compute
Execution Engine ¢

Remote Local
Execution Execution

—>>

Storage Engine ¢ OREILLY

Transaction Lock DQtQ bqse
Manager Manager Internails
-t -t -t é Deep-[\)/i;/e Iinto How Distributed Data
ystems Work
S orage Structures Access Methods
in files

Buffer Manager Recovery
Manager

. . Alex Pet
Figure 1-1. Architecture of a database management system e

(Chapter 1 of Database Internals, by Petrov)

Data Base Management Systems

Architecture: big picture of a system's

components/subsystems

Databases manage all the resources

we've learned about:

storage

memory
network
compute

In-memory cache

example database architecture:

Transport

q Cluster Client

" | Communication Communication
Query Processor i

Query Parser

Query Optimizer

Execution Engine ¢

S Remote Local
Execution Execution

Storage Engine ¢

Transaction Lock
Manager Manager

Access Methods

Buffer Manager \ Recovery
Manager

Figure 1-1. Architecture of a database management system

(Chapter 1 of Database Internals, by Petrov)

OREILLY

Database
Internals

A Deep-Dive into How Distributed Data
Systems Work

Alex Petrov

Data Base Management Systems

Architecture: big picture of a system's

components/subsystems

Databases manage all the resources
we've learned about:

* storage

* memory

* network

* compute

—>>

example database architecture:

Transport
q Cluster Client
" | Communication Communication

Query Processor

Query Parser

Query Optimizer

Execution Engine ¢

Remote Local
Execution Execution
Storage Engine ¢
Transaction Lock
Manager Manager

Access Methods

Buffer Manager \

Recovery
Manager

Figure 1-1. Architecture of a database management system

(Chapter 1 of Database Internals, by Petrov)

, SQL queries/results
sent over network

OREILLY

Database
Internals

A Deep-Dive into How Distributed Data
Systems Work

Alex Petrov

Data Base Management Systems

Architecture: big picture of a system's

components/subsystems

Databases manage all the resources
we've learned about:

* storage

* memory

 network

°* compute

—>>

example database architecture:

Transport
q Cluster Client
" | Communication Communicati

Query Processor

i

Query Parser

Query Optimizer

Execution Engine ¢

compute over data

to answer queries

Remote Local
Execution Execution
Storage Engine ¢ O'REILLY
Transaction Lock DQtQ bqse
Manager Manager Internails

Access Methods

A Deep-Dive into How Distributed Data
Systems Work

Buffer Manager \

Recovery
Manager

Figure 1-1. Architecture of a database management system

(Chapter 1 of Database Internals, by Petrov)

Alex Petrov

Files vs. Databases (storage+compute coupling)

some data some data

!

Databases pros/cons (relative to just using files):

"[databases] tishtly couple their internal layout of the data and indexes in on-
disk files with their highly optimized query processing engines, thus providing
very fast computations on the stored data...”

"Databases store data in complex (often proprietary) formats that are
typically highly optimized for only that database’s SQL processing engine to
read. This means other processing tools, like machine learning and deep
learning systems, cannot efficiently access the data (except by inefficiently
reading all the data from the database)."

OREILLY

Learning

Spark

Lightning-Fast Data Analytics ':

Jules S. Damiji,
Brooke Wenig,
Tathagata Das

& Denny Lee

ord by Matei Zaharia

Outline

File Formats

Demos

Databases
* tables and queries
* architecture
* transactions vs. analytics

Transactions vs. Analytics

SELECT AVG(rate) FROM tbl_loan; analytics (calculate over many/all rows, few colums)

SELECT amount, rate FROM tbl_loan WHERE id = 544; | 1 1coctions (working with whole row
INTO tbl_loan (...) VALUES (...); or few rows at a time)

(as a language) works great for both transactions and analytics
Problem: it's hard for a single (SQL or otherwise) to be good at both

Main database types:
 OLTP (online transactions processing)
* OLAP (online analytics processing)

"The meaning of in OLAP is unclear; it probably refers to the fact that queries are not
just for predefined reports, but that analysts use the OLAP system interactively for explorative
queries." ~ Kleppmann.

Transactions vs. Analytics

example database architecture:

Transport

3 Cluster Client

" | Communication Communication
Query Processor I

Query Parser

Query Optimizer

Execution Engine ¢

Remote Local

>

Execution Execution

Storage Engine ¢

OREILLY
Transaction Lock Database
Manager Manager I nterna I S

Typical storage design Dy et Dt it
OLTP: row oriented data layout Access Methods
OLAP: col oriented data layout

Buffer Manager Recovery

Manager

. . Alex Pet
Figure 1-1. Architecture of a database management system e

(Chapter 1 of Database Internals, by Petrov)

What if you need transactions AND analytics?

g Warehouse Truck

2 Customer ;
3 worker driver

é’ Ecommerce site Stock-keeping app Vehicle route planner

]

-'_,] 1 1 1 1

u>l’\ 1 1 1 1 I

v - : : - : | - 1
& Sales : . Inventory . . Geo :

-l DB DB DB : . .

o | | , Designing

--- Data-Intensive
Applications
extract extract extract

é’ transform transform transform !

-'q_,) 1

< load load / load

v Martin Kleppmann
o

<C . l

5| Business % ; haabd Data warehouse

analyst '

__

Figure 3-8. Simplified outline of ETL into a data warehouse.
(Chapter 3 of Data-Intensive Applications, by Kleppmann)

Vocab

. : the OLAP database where we combine data from many sources
. . extract-transform-load (process for getting data out of OLTP DBs and into OLAP DB)

