[544] Spark SQL

Tyler Caraza-Harter

Learning Objectives

- create Hive tables and views as preparation for Spark SQL queries
- write queries that pull together related data (distinct, group by, windowing, joining)
- use a combination of SQL and DataFrame operations as part of a single calculation

Outline

Views and Tables

Grouping

Joining

Tables and Views

orig.parquet	
\mathbf{X}	\mathbf{Y}
A	1
B	2
A	3
C	4

mytable vs. myview

- which one is faster to create?
- which one takes less space?
- which one is faster if we sum up the Y column?

Demos...

Outline

Views and Tables

Grouping
Joining

DISTINCT

GROUPS,AGGREGATES

GROUPS

PARTITIONS,WINDOW FUNCTIONS

Nested/chained grouping

Multiple grouping levels

- SQL uses nested queries (or complicated WITH statements)
- DataFrames can chain multiple groupby's together

TopHat

Demos...

Outline

Views and Tables

Grouping
Joining
which bands did each guest at the festival see?
INNER JOIN on visits.day = performances.day
equi join

many-to-many relationship:
we join on day
each day has many visits each day has many performances

Joining

which bands did each guest at the festival see? INNER JOIN on visits.day = performances.day

Joining is logically similar to grouping, but on two tables.

To find matches, we need to bring portions of each table with the same day together to the same place.

Joining

Joining

which guests never saw a performance?
LEFT JOIN on visits.day = performances.day

Joining
which guests never saw a performance?
LEFT JOIN on visits.day = performances.day

Demos...

