
[544] Caching and PyArrow
Tyler Caraza-Harter

Learning Objectives

• write cache-friendly code with Numpy and PyArrow
• use memory mappings via PyArrow to access data that is

larger than physical memory
• enable swapping to alleviate memory pressure
• configure Docker memory limits on physical memory used

Outline
CPU: L1-L3

Demos: Numpy+PyArrow...

Background: Virtual Address Spaces

OS (Operating System): Page Cache

Demos: PyArrow+Docker

Granularity

If a process reads 1 byte and misses, how much data should the CPU bring into
the cache?

• too little: we'll have many more misses if we read nearby bytes soon
• too much: wasteful to load data to cache that might never be accessed

L1-L3 cache data in units called cache lines
• modern CPUs typically 64 bytes (for example, 8 int64 numbers)
• M1/M2 uses 128

int64
int64
int64
int64
int64
int64
int64
int64

ca
ch

eli
ne

int64
int64
int64
int64
int64
int64
int64
int64

ca
ch

eli
ne

int64
int64
int64
int64
int64
int64
int64
int64

ca
ch

eli
ne

int64
int64
int64
int64
int64
int64
int64
int64

ca
ch

eli
ne

int64
int64
int64
int64
int64
int64
int64
int64

ca
ch

eli
ne

int64
int64
int64
int64
int64
int64
int64
int64

ca
ch

eli
ne

how many
misses?

how many
misses?

how many
misses?

Cache Lines and Misses

Example 1: Step and Multiply

Gallery of Processor Cache Effects

http://igoro.com/archive/gallery-of-processor-cache-effects/

for (int i = 0; i < arr.Length; i += K) arr[i] *= 3;

as K gets bigger, we do fewer
multiplications. But does it matter?

http://igoro.com/archive/gallery-of-processor-cache-effects/

Example 2: Matrices

row

row

row

row

matrix of numbers
logically, 2-dimensional

physically, those rows are arranged along
1-dimension in the virtual address space

virtual address
spaces

0 N

code stackrow row row row ...

Example 2: Matrices

0 N

code stackrow row row row ...

...

summing over row:
data consolidated over few cache lines

summing over column: each number is in its own cache line and triggers a cache miss

row

row

row

row

matrix of numbers
logically, 2-dimensional

Numpy: Controlling Layout with Transpose

for efficiency, transpose doesn't actually move/copy data,
meaning we can get fast column sum by (a) putting

column data in rows and (b) transposing

0 N

code stackrow row row ...column column

np.array([[1,2],

 [3,4],

 [5,6]])

np.array([[1,3,5],

 [2,4,6]]).T

any calculations on the two tensors will produce the same results,
but they'll each be faster for different access patterns!

Example 3: Ordered Collections of Strings

0 N

stack"A" next ..."B" next"C" next

linked list

0 N

stack...

array of references to strings

"A" "C" "B"

0 N

stack..."A" "C""B"

array of inline strings

which layout is most cache friendly?

Example 3: Ordered Collections of Strings

0 N

stack..."A" "C""B"

array of inline strings

how to tell the end of one string from the start of the next?
how to jump immediately to string at index i?
how support null/None?

PyArrow String Array Data Structure

https://www.packtpub.com/product/in-memory-analytics-with-apache-arrow/9781801071031

data is packed into fewest possible cache lines

• collection of named arrays is a Table
• arrays for different types, each cache friendly
• null support for types like int (not forced into floats)

https://www.packtpub.com/product/in-memory-analytics-with-apache-arrow/9781801071031

Outline
CPU: L1-L3

Demos: Numpy+PyArrow...

Background: Virtual Address Spaces

OS (Operating System): Page Cache

Demos: PyArrow+Docker

Outline
CPU: L1-L3

Demos: Numpy+PyArrow...

Background: Virtual Address Spaces

OS (Operating System): Page Cache

Demos: PyArrow+Docker

Processes and Address Spaces

physical memory

0 M
physical addresses

virtual address
spaces

0 N 0 N

Address spaces
• A process is a running program
• Each process has it's own virtual address space
• The same virtual address generally refers to different memory in different processes
• Regular processes cannot directly access physical memory or other addr spaces

"pages" (usually 4 KB) map
to physical memory

Processes and Address Spaces

physical memory

0 M
physical addresses

virtual address
spaces

0 N 0 N

Address spaces
• A process is a running program
• Each process has it's own virtual address space
• The same virtual address generally refers to different memory in different processes
• Regular processes cannot directly access physical memory or other addr spaces
• Address spaces can have holes (N is usually MUCH bigger than M)
• Physical memory for a process need not be contiguous

What goes in an address space?

virtual address
spaces

what goes here?

0 N

https://pythontutor.com/

https://pythontutor.com/

What goes in an address space?

virtual address
spaces

0 N

code
(Python)

stack heap

Note: code and heap generally not contiguous

What goes in an address space?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

some packages
(like numpy)

How does code execute?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

instruction pointer

How does code execute?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

CPUs
• CPUs are attached to at most one instruction pointer at any given time
• they run code by executing instructions and advancing the instruction pointer
• Note: interpreter left out for simplicity (CPU points to interpreter code, which

points to Python bytecode)

How does code execute?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

CPUs
• CPUs are attached to at most one instruction pointer at any given time
• they run code by executing instructions and advancing the instruction pointer
• Note: interpreter left out for simplicity (CPU points to interpreter code, which

points to Python bytecode)

How does code execute?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

call numpy function

CPUs
• CPUs are attached to at most one instruction pointer at any given time
• they run code by executing instructions and advancing the instruction pointer
• Note: interpreter left out for simplicity (CPU points to interpreter code, which

points to Python bytecode)

Outline
CPU: L1-L3

Demos: Numpy+PyArrow...

Background: Virtual Address Spaces

OS (Operating System): Page Cache

Demos: PyArrow+Docker

mmap (Memory Map)

physical memory

0 Mphysical addresses

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

Anonymous mmap

physical memory

0 Mphysical addresses

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

import mmap

mm = mmap.mmap(-1, 4096*3)

anonymous 3 pages

• Python (and other language runtimes) will mmap some anonymous memory when
they need more heap space

• this will be used for Python objects (ints, lists, dicts, DataFrames, etc.)

File-Backed mmap

physical memory

0 Mphysical addresses

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

import mmap

f = open("somefile.txt", mode="rb")

mm = mmap.mmap(f.fileno(), 0, # 0 means all 
 access=mmap.ACCESS_READ)

somefile.txt

File-Backed mmap

physical memory

0 M

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

somefile.txt

read data

read from disk

File-Backed mmap

physical memory

0 M

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

somefile.txt

read data

read from disk

File-Backed mmap

physical memory

0 M

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

somefile.txt

• virtual memory used: 9*pagesize = 36 KB
• physical memory used: 7*pagesize = 28 KB

File-Backed mmap

physical memory

0 M

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

somefile.txt

page cache
data

• data loaded for accesses to file-backed mmap
regions are part of the "page cache"

File-Backed mmap

physical memory

0 M

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

somefile.txt

evict!

• data loaded for accesses to file-backed mmap
regions are part of the "page cache"

• it works like a cache because there is another copy
on disk, so we can evict under memory pressure

Swap Space

physical memory

0 M

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

somefile.txt

can we every evict data for
anonymous mmap data?

Swap Space

physical memory

0 M

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

somefile.txt

can we every evict data for
anonymous mmap data?

• we can create same space (a swap file) to which
the OS can evict data from anonymous mappings

swap file

Swap Space

physical memory

0 M

virtual address
spaces

0 N

An mmap call can add new regions to a virtual address space. Two varities:
• anonymous
• backed by a file

somefile.txt

• we can create same space (a swap file) to which
the OS can evict data from anonymous mappings

• of course, if we access these virtual addresses again,
it will be slow to bring the data back

swap file

evict!evict!

Outline
CPU: L1-L3

Demos: Numpy+PyArrow...

Background: Virtual Address Spaces

OS (Operating System): Page Cache

Demos: PyArrow+Docker

