
[544] Processes and Threads
Tyler Caraza-Harter



Learning Objectives

• describe the interactions between schedulers, CPUs, threads, 
and address spaces

• decide for a given scenario whether to organize code as 
single-threaded, multi-threaded, or multi-process

• trace through different interleavings to identify race 
conditions



Motivation

Modern CPUs have many cores (maybe dozens)

Trend: more cores rather than faster cores

Problem: a simple Python program can use at most ONE core 
(less if it accesses files or the Internet)

Understanding threads and processes will:
• let us write programs that fully utilize CPU resources
• decide the structure of our concurrent program (threads or processes) 

depending on the situation



Outline
Review: Virtual Address Spaces

Threads

Demos and Worksheet



Processes and Address Spaces

physical memory

0 M
physical addresses

virtual address
spaces

0 N 0 N

Address spaces
• A process is a running program
• Each process has it's own virtual address space
• The same virtual address generally refers to different memory in different processes
• Regular processes cannot directly access physical memory or other addr spaces
• Address spaces can have holes (N is usually MUCH bigger than M)
• Physical memory for a process need not be contiguous



What goes in an address space?

virtual address
spaces

0 N

code
(Python)

stack heap

Note: the stack is contiguous, but code and heap generally are not

code
(C)

some packages
(like numpy)

file-backed 
mmap

anonymous 
mmap



How does code execute?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

instruction pointer



How does code execute?

virtual address
spaces

0 N

code
(Python)

stack heapcode
(C)

CPUs
• CPUs are attached to at most one instruction pointer at any given time
• they run code by executing instructions and advancing the instruction pointer
• Note: interpreter left out for simplicity (CPU points to interpreter code, which 

points to Python bytecode)



Outline
Review: Virtual Address Spaces

Threads

Demos and Worksheet



Threads

virtual address
spaces

code
(Python)

stack heapcode
(C)

Threads have their own instruction pointers and stacks, but share the heap.

Single-threaded process:

virtual address
spaces

code
(Python)

stack heapcode
(C)

Multi-threaded process:

stack



Context Switch

processes

Schedulers
• CPU scheduler is an important sub system in an operating system
• schedulers decide when to context switch between threads
• context swich: change which thread a CPU is running



Context Switch

processes

Schedulers
• CPU scheduler is an important sub system in an operating system
• schedulers decide when to context switch between threads
• context swich: change which thread a CPU is running

context switch!
same process, diff thread

context switch!
thread in diff process



Scheduling Restrictions: Blocked Threads

processes

Threads can be in one of three states
• running: CPU is executing it
• blocked: waiting on something other than CPU (network, input, disk, etc)
• ready: scheduler can choose to context switch to it

running running
blocked

ready

r = requests.get(URL)

total = sum(r.json())

print(total)

CPU cannot advance instruction 
pointer until network request finishes



Efficient Use of Compute Resources

Wasted cores: (1) not enough threads (2) blocked threads

For 100% CPU utilization (difficult goal)
• need at least one ready/running thread for each CPU core
• generally need more threads than cores (threads are often blocked)
• threads could be in one process (or many)

Multi-threaded applications
• good when multiple threads need to access frequently modified data structures
• new kinds of bugs possible (race conditions, deadlock)

Multi-process applications (https://docs.python.org/3/library/multiprocessing.html)
• easier to program (or just manually launch several processes in background)
• better at keeping multiple cores busy simultaneously (Python specific)

Both approaches work well for dealing with blocked threads

https://docs.python.org/3/library/multiprocessing.html


Coding Demos, Worksheet

Thread operations
• t = threading.Thread()
• t.start(target=????, args=[????])
• t.join()
• t.get_native_id()


