CS 544, Locks Wor

thread 1
lock.acquire ()
L.append(3)

x += 1
lock.release()

thread 2

y += 1

y += 2
lock.acquire ()
diff = len(L) - x
lock.release ()

thread 1 thread 2 X L
---------------- 2 [5,4]
y +=1
lock.aquire()
y+=2
L.append(3) [5,4,3]
lock.acquire()
diff = len(L) - x
lock.release()
X +=1 3

lock.release()

ksheet

diff
None

\4

Problem 1: which statement executions above are not possible in a correct

locking system? Which statements would cause exceptions? If the locking

system behaved correctly, what would be possible values for diff at the end?

thread 1

if g !'= 0O:
lock.acquire ()
r =1/9g
lock.release ()

thread 2
#A lock.acquire ()
#B qg=20
#C lock.release ()

#D

#x
#Y
#z

Problem 2: assume q is 2 before the threads start running. Write out an
interleaving (for example, something like A, B, C, ...) that leads to an

ZeroDivisionError.

S



def

t:
a:
t.st
with

t.jo
c=

= threading.Lock ()

task () :

global x

with lock:
X = 2

threading.Thread (target=task)
X

art ()
lock:
b = x
in()
X

Problem 3: how do a, b, and c end? Write "?" if it is impossible to know.

thread 1
lockA.acquire ()
lockB.acquire ()
A +=1

B =1
lockA.release ()
lockB.release()

thread 2
lockB.acquire ()
lockA.acquire ()
B += 2

A —-= 2
lockB.release ()
lockA.release ()

thread 1

thread 2

S

\4

Problem 4: write an interleaving that leads to "deadlock" (both threads blocked).



