
CS 544, Locks Worksheet

thread 1 thread 2 x L diff y
---------	 	 ---------	 	 2	 [5,4]	 	 None	 	 4

	 	 	 y += 1		 	 	 	 	 	 	 5

lock.aquire()

	 	 	 y += 2		 	 	 	 	 	 	 7

L.append(3)	 	 	 	 	 	 [5,4,3]

	 	 	 lock.acquire()		 	 	 	 	

	 	 	 diff = len(L) - x	 	 	 	 1

	 	 	 lock.release()	

x += 1		 	 	 	 	 3	 	 	 	 	

lock.release()	

Problem 1: which statement executions above are not possible in a correct
locking system? Which statements would cause exceptions? If the locking
system behaved correctly, what would be possible values for diff at the end?

Problem 2: assume q is 2 before the threads start running. Write out an
interleaving (for example, something like A, B, C, ...) that leads to an
ZeroDivisionError.

thread 1

lock.acquire()

L.append(3)

x += 1

lock.release()

thread 2

y += 1

y += 2

lock.acquire()

diff = len(L) - x

lock.release()

tim
e

thread 1

if q != 0: #A

 lock.acquire() #B

 r = 1/q #C

 lock.release() #D

thread 2

lock.acquire() #X

q = 0 #Y

lock.release() #Z

a = ___________

b = ___________

c = ___________

Problem 3: how do a, b, and c end? Write "?" if it is impossible to know.

thread 1 thread 2 A B
---------	 	 	 ---------	 	 	 	 30	 40	

Problem 4: write an interleaving that leads to "deadlock" (both threads blocked).

lock = threading.Lock()

x = 1

def task():

	 global x

	 with lock:

	 	 x = 2

t = threading.Thread(target=task)

a = x

t.start()

with lock:

	 b = x

t.join()

c = x

thread 1

lockA.acquire()

lockB.acquire()

A += 1

B -= 1

lockA.release()

lockB.release()

thread 2

lockB.acquire()

lockA.acquire()

B += 2

A -= 2

lockB.release()

lockA.release()

tim
e

