
[544] Spark MLlib
Tyler Caraza-Harter

Learning Objectives

• perform common machine learning tasks (train/test split,
preprocessing, pipelining, training, prediction, and evaluation)
using Spark MLLib

• describe how decision trees make predictions
• describe how the PLANET algorithm (using by Spark

decision trees) efficiently trains on large, distributed data

Outline
ML Review

Training/Predicting APIs

Demos

Decision Trees

Machine Learning, Major Ideas
Categories of Machine Learning:

• Reinforcement learning: agent makes series of actions to maximize reword
• Unsupervised learning: looking for generate patterns
• Supervised learning: train models to predict unknowns

Models are functions that return predictions:

def my_model(some_info):

 ...

 return some_prediction

Example:

def weather_forecast(temp_today, temp_yesterday):

 ...

 return temp_tomorrow

categorical (A, B, C) is "classification"

numeric (1, 2, 3) is "regression"

Machine Learning, Major Ideas
Categories of Machine Learning:

• Reinforcement learning: agent makes series of actions to maximize reword
• Unsupervised learning: looking for generate patterns
• Supervised learning: train models to predict unknowns

Models are functions that return predictions:

def my_model(some_info):

 ...

 return some_prediction

Example:

def weather_forecast(temp_today, temp_yesterday):

 ...

 return temp_tomorrow

computation usually involves some
calculations (multiply, add) with various

numbers (parameters). Training is finding
parameters that result in good predictions

for known training data

Learning from Data

how can the cases where we DO know y help
us predict the cases where we do not?

• feature columns: x1 and x2
• label column: y

Learning from Data

random split

train

validation

test

Learning from Data

train

validation

test

algorithm A algorithm B

fit/train some models

model A model B

Learning from Data

train

validation

test

make predictions

model A model B

8
3
4

25
2
15

Learning from Data

train

validation

test

which model
predicts better?

model A model B

8
3
4

25
2
15

winner!

Learning from Data

train

validation

test
model A

10
3
3

winner!

how good does the
chosen model do
on the test data?

models that do good on train data but bad
on validation/test data have "overfitted"

why might the winning model do worse on
the test data than the validation data?

Learning from Data

train

validation

test
model A

8
7
1

winner!

deploy the model. Use it for
predicting real unknowns!

Outline
ML Review

Training/Predicting APIs
• sklearn
• PyTorch
• Spark MLlib

Demos

Decision Trees

Training

model = ????

model.fit(X, y)

model parameters can relate X to y

model = ????

TODO: optimizer, loss function

training loop

for epoch in range(????):

 for X, y in ????:

 ...

model parameters can relate X to y

unfit_model = ????

fit_model = unfit_model.fit(df)

fit_model params can relate x to y

scikit-learn

pytorch

Spark MLlib

• models are mutable
• fitting sets/improves

parameters

• models are immutable
• fitting returns new

model object

Predicting

y = model(X)

df2 = fit_model.transform(df)

scikit-learn

pytorch

Spark MLlib

y = model.predict(X)

Data

y = model(X)

df2 = fit_model.transform(df)

scikit-learn

pytorch

Spark MLlib

X (features) y (label)

df2df
X (features)

X (features)
y (lab

el)

y = model.predict(X)

Features Column

2 3 (2,3) df2df
X (features)

X (features)
y (lab

el)

• we only get one features column
• it usually contains vectors
• those vectors typically contain

values from other columns
• example: 

(2,3)

Terminology
Spark and scikit-learn use many of the same terms, with very different meaning.

Transformer (scikit-learn)
• object has .tranform method
• takes a DataFrame, returns a differerent DataFrame
• used as preprocessing step for a model

Transformer (Spark)
• object has .tranform method
• takes a DataFrame, returns original with 1 or more additional columns
• a fitted model is a transformer that adds a prediction column

Estimator (scikit-learn)
• object has .fit and .predict methods
• .fit modifies the object
• makes predictions after learning params

Estimator (Spark)
• object has .fit method that returns new object
• an unfitted model is an estimator; calling .fit returns a fitted model (a transformer)

Pipeline
Both scikit-learn and Spark: a pipeline is a series of stages (transformers/estimators). fit/
transform/etc. are called as appropriate on each stage.

T

T

E

Pipeline (p)

Pipeline (Spark Example)
Both scikit-learn and Spark: a pipeline is a series of stages (transformers/estimators). fit/
transform/etc. are called as appropriate on each stage.

T

T

E

Pipeline (p)

m = p.fit(????)
.transform

.transform

.fit T

Pipeline (Spark Example)
Both scikit-learn and Spark: a pipeline is a series of stages (transformers/estimators). fit/
transform/etc. are called as appropriate on each stage.

T

T

E

Pipeline (p)

T

T

T

PipelineModel (m)

copy

copy

Pipeline (Spark Example)
Both scikit-learn and Spark: a pipeline is a series of stages (transformers/estimators). fit/
transform/etc. are called as appropriate on each stage.

T

T

E

Pipeline (p)

T

T

T

PipelineModel (m)

m.transform(????)

.transform

.transform

.transform

predictions

TopHat

Outline
ML Review

Training/Predicting APIs

Demos

Decision Trees

Spark mllib packages
• pyspark.mllib -- based on RDDs
• pyspark.ml -- based on DataFrames

Distribued ML Outline
ML Review

Training/Predicting APIs

Demos

Decision Trees:
• Background
• Training in memory
• PLANET algorithm

Decision Trees

decision trees are like nested
if/else statements

def predict(row):

 if row.salary < 50K:

 return False

 else:

 if row.commute > 1h:

 return False

 else:

 if row.coffee == "free":

 return True

 else:

 return False

features and labels can be
numeric or categorical

problem: if the tree is large,
many subtrees might be similar

Ensemble Methods
Ensemble: many simple models vote. Many simple decision trees (each trained on subset
of rows/columns) together are often better than one big tree. Examples:

• random forest
• gradient-boosted trees

A Spark cluster can train many trees in a random forest simultaneously!

Tree methods vs. Deep Learning

Image from Blog Post: A Short Chronology Of Deep Learning For Tabular Data, by Sebastian Raschka
https://sebastianraschka.com/blog/2022/deep-learning-for-tabular-data.html

Tree-based methods are still relevant in the age of deep learning
because there are many important tabular datasets.

https://sebastianraschka.com/blog/2022/deep-learning-for-tabular-data.html

Is a Tree Good?
x1 x2 y

1 -1 5

2 2 8.6

3 3 8.8

4 -2 5.2

data:

x1 > 2.5 x2 > 0
yesno yesno

x1 x2 y

1 -1 5

2 2 8.6

x1 x2 y

3 3 8.8

4 -2 5.2

x1 x2 y

1 -1 5

4 -2 5.2

x1 x2 y

2 2 8.6

3 3 8.8

which tree asks better questions about x values if we want to predict y?

Impurity
x1 x2 y

1 -1 5

2 2 8.6

3 3 8.8

4 -2 5.2

data:

x1 > 2.5 x2 > 0
yesno yesno

x1 x2 y

1 -1 5

2 2 8.6

x1 x2 y

3 3 8.8

4 -2 5.2

x1 x2 y

1 -1 5

4 -2 5.2

x1 x2 y

2 2 8.6

3 3 8.8

"impurity" measures (like variance) measure how
non-uniform label (y) values are in leaves

high variance high variance low variance low variance

better tree

Predictions
x1 x2 y

1 -1 5

2 2 8.6

3 3 8.8

4 -2 5.2

3 50 ????

data:

x2 > 0

yesno

x1 x2 y

1 -1 5

4 -2 5.2

x1 x2 y

2 2 8.6

3 3 8.8
prediction: 5.1 prediction: 8.7

better treeif a new data point lands in a
leaf, assume it is similar to
other rows in that leaf...

Distribued ML Outline
ML Review

Training/Predicting APIs

Demos

Decision Trees:
• Background
• Training in memory
• PLANET algorithm

Splitting Nodes

temp humidity rain

80 45 no

50 40 yes

45 20 no

70 25 no

node A

temp humidity rain

45 20 no

70 25 no

node A: humidity >= 40

temp humidity rain

80 40 no

50 45 yes

node B node C
split

yesno

probability: 25% probability: 0% probability: 50%

Algorithm
• start with one node with all data
• find split point in some column to create two children
• identify another node, recursively split
• eventually stop

Splitting Nodes

temp humidity rain

80 45 no

50 40 yes

45 20 no

70 25 no

node A

temp humidity rain

45 20 no

70 25 no

node A: humidity >= 40

temp humidity rain

50 45 yes

node B node C: temp >= 80
split

yesno

Algorithm
• start with one node with all data
• find split point in some column to create two children
• identify another node, recursively split
• eventually stop

probability: 25% probability: 0%

probability: 100%

yesno

temp humidity rain

80 40 no

probability: 0%

node D node E

When to Stop Splitting?

temp humidity rain

80 45 no

50 40 yes

45 20 no

70 25 no

node A

temp humidity rain

45 20 no

70 25 no

node A: humidity >= 40

temp humidity rain

50 45 yes

node B node C: temp >= 80
split

yesno

Some Approaches
• set maximum tree height
• set minimum number of rows in node required for split
• prune tree later to get rid of unhelpful/excessive splitting

probability: 25% probability: 0%

probability: 100%

yesno

temp humidity rain

80 40 no

probability: 0%

node D node E

Overfitting

temp humidity rain

45 20 no

70 25 no

node A: humidity >= 40

temp humidity rain

50 45 yes

node B node C: temp >= 80
yesno

probability: 0%

probability: 100%

yesno

temp humidity rain

80 40 no

probability: 0%

node D node E

temp humidity rain

45 20 no

70 25 no

node A: humidity >= 40

temp humidity rain

80 40 no

50 45 yes

node B node C
yesno

probability: 0% probability: 50%temp=65, humidy=42

50% chance of rain

100% chance of rain

which tree will
make better
predictions?

"simple" tree

"complex" tree

Choosing Splits

temp humidity rain

80 45 no

50 40 yes

45 20 no

70 25 no

node A

split

Which node to split?
• 2 feature columns
• 3 ways to divide 4 rows into big small
• 2*3 = 6 choices
• try all, choose one that reduces impurity the most!
• how to do so efficiently?

probability: 25%

Choosing Splits

temp humidity rain

80 45 no

50 40 yes

45 20 no

70 25 no

node A

temp humidity rain

45 20 no

50 40 yes

70 25 no

80 45 no

left no left yes right no right yes impurity

1 0 2 1 ...

1 1 2 0 ...

2 1 1 0 ...

sort by each column calculate impurity for each split (one pass)

Observation: we can incrementally compute
impurity for each split point by looking at just one
more row of data. Don't need to loop over all

rows for every possible split point.

Choosing Splits

temp humidity rain

80 45 no

50 40 yes

45 20 no

70 25 no

node A

temp humidity rain

45 20 no

50 40 yes

70 25 no

80 45 no

temp humidity rain

45 20 no

70 25 no

50 40 yes

80 45 no

left no left yes right no right yes impurity

1 0 2 1 ...

1 1 2 0 ...

2 1 1 0 ...

sort by each column calculate impurity for each split (one pass)

left no left yes right no right yes impurity

1 0 2 1 ...

2 0 1 1 ...

2 1 1 0 ...

choose
best

Challenge: Big Data

temp humidity rain

80 45 no

50 40 yes

45 20 no

70 25 no

node A

temp humidity rain

45 20 no

50 40 yes

70 25 no

80 45 no

sort by each column

...

What if rows for a node are too big to fit in RAM on one worker?
• partitioned across many Spark workers
• maybe fits in cumulative RAM of many workers (or maybe not)
• each sort would be expensive (network shuffle/exchange)
• if looping over every possible split point, we'll be computing on one worker at any

given time (the one that has data around the split point). Not parallel!

Distribued ML Outline
ML Review

Training/Predicting APIs

Demos

Decision Trees:
• Background
• Training in memory
• PLANET algorithm

PLANET Algorithm

PLANET: Parallel Learner for Assembling Numerous Ensemble Trees
• originally implemented as MapReduce jobs
• Spark DecisionTreeRegressor and DecisionTreeClassifier use it too

Hybrid Approach
• in-memory splitting for nodes with few enough rows to fit in worker memory
• simplified (fewer split points) and distributed approach for nodes with lots of data

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36296.pdf

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36296.pdf

Step 1: Compute Equi-Depth Histograms

x1 x2 ... x3 y

dt = DecisionTreeClassifier(labelCol="y")

dt.setMaxBins(4)

equi-depth histogram for x3 feature
(each bucket has approx same number of samples)

histograms for every feature...

Warning: number of bins must be greater than biggest
number of unique values in any categorical column

Split Points: In-Mem vs. Distributed

x1 x2 ... x3 y

split points for one-node,
in-memory algorithm

split points for distributed algorithm

• splits based on initial data
• every task has split info for every column
• small number of pre-defined split points

make it easy for executors to collaborate
with minimal coordination

Parallel Splitting
node A

node B node C

node E node F node G node H
many rows many rowsfew rows few rows

x1 x2 ... x3 y
x1 x2 ... x3 y x1 x2 ... x3 yx1 x2 ... x3 y

Logical View of Rows
(rows in a DT node are NOT
in the same place physically)

Decision Tree

Observation: split decisions at a given
node are unrelated to decisions at

other nodes. It's easy to grow the tree
at different places in parallel!

split

split

Clarification: nodes in the tree data
structure DO NOT correspond to

nodes in the Spark cluster.

Physical Layout
node A

node B node C

many rows many rowsfew rows few rows

Decision Tree

x1 x2 ... x3 y

Spark executor

Spark partition

• all rows are in one big Spark DataFrame
• no particular order for rows

node E node F node G node H

Physical Layout
node A

node B node C

many rows many rowsfew rows few rows

Decision Tree

x1 x2 ... x3 y

Spark executor

Spark partition

• all rows are in one big Spark DataFrame
• no particular order for rows
• given current tree and x1...xN values, we can

infer what leaf node in the tree owns each row

E

F

E

E

G

G

G

F

H

G

F

H

E

E

G

node E node F node G node H

In Memory Build (small nodes)
node A

node B node C

many rows many rowsfew rows few rows

x1 x2 ... x3 y

E

F

E

E

G

G

G

F

H

G

F

H

E

E

G

node E node F node G node H

hash partition
exchange

new subtrees

new subtrees

In Memory Build (small nodes)
node A

node B node C

many rows many rows

x1 x2 ... x3 y

E

F

E

E

G

G

G

F

H

G

F

H

E

E

G

node E node F node G node H

once in memory, splits keep happening
recursively, so these nodes are done.

Big Nodes
node A

node B node C

many rows many rows

x1 x2 ... x3 y

E

F

E

E

G

G

G

F

H

G

F

H

E

E

G

node E node F node G node H

• don't move row data between machines!
• just output stats per partition for every split/feature option

Big Nodes
x1 x2 ... x3 y

E

F

E

E

G

G

G

F

H

G

F

H

E

E

G

split x1 x2 ... x3

0

1

2

dt = DecisionTreeClassifier(labelCol="y")

dt.setMaxBins(4)

node E (partial)

stats per feature/split combo
• left no: number
• left yes: number
• right no: number
• right yes: number

x1 x2 ... x3 y

E

F

E

E

G

G

G

F

H

G

F

H

E

E

G

split x1 x2 ... x3

0

1

2

node E (partial)

split x1 x2 ... x3

0

1

2

node G (partial)

split x1 x2 ... x3

0

1

2

node E (partial)

split x1 x2 ... x3

0

1

2

node G (partial)

Big Nodes

Big Nodes
x1 x2 ... x3 y

E

F

E

E

G

G

G

F

H

G

F

H

E

E

G

split x1 x2 ... x3

0

1

2

node E (partial)

split x1 x2 ... x3

0

1

2

node G (partial)

split x1 x2 ... x3

0

1

2

node E (partial)

split x1 x2 ... x3

0

1

2

node G (partial)

split x1 x2 ... x3

0

1

2

node E (complete)

split x1 x2 ... x3

0

1

2

node G (complete)

Big Nodes
x1 x2 ... x3 y

E

F

E

E

G

G

G

F

H

G

F

H

E

E

G

split x1 x2 ... x3

0

1

2

node E (complete)

split x1 x2 ... x3

0

1

2

node G (complete)

• each stats table corresponds to a DT node we can split 
(we will choose best split for each node)

• each column represents a feature we could split on
• each row represents a threshold we could use for that split

best:
left Y/N = 10/20
right Y/N = 40/10

not as good:
left Y/N = 25/20
right Y/N = 25/10

x1 x2 ... x3 y

• we split E and G, creating 4 new nodes
• we DID NOT shuffle rows of data
• we DID shuffle statistics about split choices
• recursively keep splitting (either distributed or

in-memory, depending on remaining size)

node A

node B node C

node E node F node G node H

many rows few

rows
many rows many rows

TopHat

