
[544] HBase and Cassandra
Tyler Caraza-Harter

Learning Objectives

• describe HBase's approach to reliability (HDFS replication,
RegionServer failover)

• describe the data models for HBase and Cassandra (wide
row and wide partition, respectively)

• select columns Cassandra table to serve as partition keys,
cluster keys, and static columns to make specific operations
efficient

Hadoop Ecosystem

Distributed File System GFS

Distributed Analytics MapReduce

Distributed Database BigTable

Google

(paper only)

HDFS

Hadoop
MapReduce

HBase

Hadoop, 1st gen

(open source)

Spark

Cassandra

Modern

Hadoop

Yahoo, Facebook, Cloudera, and others developed open-
source Hadoop ecosystem, mirroring Google's systems

https://hadoop.apache.org/Ecosystem: Ambari, Avro, Cassandra, Chukwa, HBase, Hive,
Mahout, Ozone, Pig, Spark, Submarine, Tez, ZooKeeper

Dynamo
(Amazon)

https://hadoop.apache.org/

Google Architecture

GFS: Google File System (2003 paper)

MapReduce (2004 paper) BigTable (2006 paper)

radical idea: base everything on lots of cheap, commodity hardware

hard
disk
drive

hard
disk
drive

hard
disk
drive

hard
disk
drive

DataNode DataNode DataNode DataNode

Local FS Local FS Local FS Local FS

Hadoop Ecosystem

hard
disk
drive

hard
disk
drive

hard
disk
drive

hard
disk
drive

HDFS

Hadoop MapReduce HBase

DataNode DataNode DataNode DataNode

Local FS Local FS Local FS Local FS

Hadoop Ecosystem

hard
disk
drive

hard
disk
drive

hard
disk
drive

hard
disk
drive

HDFS

Hadoop MapReduce

Cassandra

DataNode DataNode Worker Worker

Local FS Local FS Local FS Local FS

Outline: HBase and Cassandra

HBase

Cassandra Data Model

Demos

HBase Data Model: Versioned Sparse Tables

columns

rows

...

1

2

3

a b c x y z ...

...

apple

table["2:y"] is "apple"

7

8

9

...

HBase Data Model: Versioned Sparse Tables

columns

rows

...

1

2

3

a b c x y z ...

...

apple

table["2:y"] is "apple"

all the empty cells don't waste space
(like NULLs might in a traditional DB)

columns grow over time,
much like rows

totally cool for each row
to have very different columns

7

8

9

...

HBase Data Model: Versioned Sparse Tables

columns

rows

...

1

2

3

a b c x y z ...

...

apple

table["2:y:v1"] is "apple"

kiwi

table["2:y:v2"] is "kiwi"

7

8

9

...

Partitioning the Row Space

rows

1

2

3

...

7

8

9

...

row ranges are called "regions"

regions may grow/split

a region is assigned to ONE HBase
"RegionServer" at any given time

RegionServers could server multiple regions

RegionServer

RegionServer

Transactions

rows

1

2

3

...

7

8

9

...

Rows are never split across regions

HBase only support single-row transactions

Design implication: try to keep all of a user's
data in ONE row, even if it means millions of
columns

RegionServer

RegionServer

Fault Tolerance: what if a RegionServer dies?

rows

1

2

3

...

7

8

9

...

RegionServer

RegionServer

Rows are never split across regions

HBase only support single-row transactions

Design implication: try to keep all of a user's
data in ONE row, even if it means millions of
columns

hard
disk
drive

DataNode

hard
disk
drive

DataNode

hard
disk
drive

DataNode

hard
disk
drive

DataNode

HDFS

RegionServer RegionServer RegionServer RegionServer

Region Region Region Region Region Region

RegionServers store region data inside HDFS files

ideally a RegionServer is placed on the same machine as a DataNode holding most of its data

Fault Tolerance: what if a RegionServer dies?

hard
disk
drive

DataNode

hard
disk
drive

DataNode

hard
disk
drive

DataNode

hard
disk
drive

DataNode

HDFS

RegionServer RegionServer RegionServer RegionServer

Region Region Region Region Region Region

offline/dead

what do do?

Fault Tolerance: what if a RegionServer dies?

hard
disk
drive

DataNode

hard
disk
drive

DataNode

hard
disk
drive

DataNode

hard
disk
drive

DataNode

HDFS

RegionServer RegionServer RegionServer RegionServer

Region Region Region Region Region Region

offline/dead

region data
still safely
stored in

3x replicated
HDFS files

Fault Tolerance: what if a RegionServer dies?

hard
disk
drive

DataNode

hard
disk
drive

DataNode

hard
disk
drive

DataNode

hard
disk
drive

DataNode

HDFS

RegionServer RegionServer RegionServer RegionServer

Region Region Region Region Region Region

offline/dead

handoff regions
to healthy

RegionServers

Fault Tolerance: what if a RegionServer dies?

HBase Storage Layout

hard
disk
drive

Observation:
• starting a write operation on disk has a very high fixed cost

sequential = fast

random = slow

Strategy:
• store new data in memory until we have a lot of data
• then do one big write to disk

HBase Storage Layout

k1=hi

write

HDFS
(backed by hard drives)

HBase Storage Layout

k1=hi | k5=apple

write

HDFS
(backed by hard drives)

HBase Storage Layout

k1=hi | k5=apple | k3=cat

write

HDFS
(backed by hard drives)

HBase Storage Layout

k1=hi | k5=apple | k3=cat | k9=dog

write

HDFS
(backed by hard drives)

HBase Storage Layout

k1=hi | k3=cat | k5=apple | k9=dog

sort+flush

HDFS
file HDFS

(backed by hard drives)

HBase Storage Layout

k6=moon | ...

write

k1=hi | k3=cat | k5=apple | k9=dog
HDFS

file HDFS
(backed by hard drives)

HBase Storage Layout

k1=hi | k3=cat | k5=apple | k9=dog
HDFS

file HDFS
(backed by hard drives)

k2=bye | k4=sun | k6=moon | k9=pup
HDFS

file

sort+flush

HBase Reads

k1=hi | k3=cat | k5=apple | k9=dog
HDFS

file

check multiple HDFS files when looking up keys

what is the value for k3? what about for k9?

k2=bye | k4=sun | k6=moon | k9=pup
HDFS

file

HDFS
(backed by hard drives)

HBase Reads

k1=hi | k3=cat | k5=apple | k9=dog
HDFS

file

check multiple HDFS files when looking up keys

what is the value for k3? what about for k9?

k2=bye | k4=sun | k6=moon | k9=pup
HDFS

file

"tombstones" are used when we delete data 
(need to write something -- can't erase old version in finalized file)

HDFS
(backed by hard drives)

Compaction: Many Small Files => Few Big Files

k1=hi | k3=cat | k5=apple | k9=dog
HDFS

file

If there are too many files, reads become too slow.

Solution: compact/combine smaller files into bigger files

k2=bye | k4=sun | k6=moon | k9=pup
HDFS

file

k1=hi | k2=bye | k3=cat | k4=sun |
k5=apple| k6=moon | k9=pup

HDFS
file

HDFS
(backed by hard drives)

Compaction: Many Small Files => Few Big Files

If there are too many files, reads become too slow.

Solution: compact/combine smaller files into bigger files

k1=hi | k2=bye | k3=cat | k4=sun |
k5=apple| k6=moon | k9=pup

HDFS
file

HDFS
(backed by hard drives)

HBase

Cassandra Data Model

Demos

Outline: HBase and Cassandra

Clusters

worker

worker

worker

worker

worker

worker

Cassandra clusters have many worker nodes
• No centralized boss node (unlike HDFS, Spark)
• Not necessarily same data center (could be geographically distributed)
• Clusters are called "rings" because some nodes are defined to be "adjacent"

Clusters

worker

worker

worker

worker

worker

worker

Cassandra clusters have many worker nodes
• No centralized boss node (unlike HDFS, Spark)
• Not necessarily same data center (could be geographically distributed)
• Clusters are called "rings" because some nodes are defined to be "adjacent"
• Ring organization doesn't necessarily correspond to network topology

switch

switch

switch

rack 1

rack 2

Keyspaces

worker

Keyspaces
• similar to databases on database servers
• keyspaces store data across many workers
• different keyspaces can have different replication settings

Each keyspace might contain many tables.

worker

worker

ks1, repl=2 ks2, repl=3

HBase: "Wide Row" design

columns

rows

...

1

2

3

a b c x y z ...

...

HBase Disadvantage: no efficient way to even know
about all the columns (only about "column families").

SQL-like query languages not easily implemented

HBase Advantage: whole row guaranteed
to be on the same RegionServer

one machine

Cassandra: "Wide Partition" design

columns

rows

a b c x y z ...x y z

non-repeating repeating

one set of machines

Cassandra: "Wide Partition" design

rows

a b c x y z

non-repeating repeating
(stacked)

one set of machines

...

Advantages
• finite columns, so can use SQL-like

queries: Cassandra Query
Language (CQL)

• can keep related data on same
machines

Disadvantages
• big partitions: imbalanced storage
• hot partitions: other imbalance

columns

Cassandra: "Wide Partition" design

rows

a b c x y z

non-repeating

one set of machines

...

partition key column(s): uniquely identifies
partition, determines machine placement

static columns: one
value per partition key

cluster column(s):
determines sort order
within partition

Primary Key Details
• primary key uniquely identifies row
• parts: 

1+ partition keys and 0+ cluster keys

repeating
(stacked)

Shema Example: Weather Data

rows

station_id date temp

non-repeating repeating

123 MadisonAP 2023-03-01 50

2023-03-02 52

2023-03-03 42

station_name

2023-03-01 55

2023-03-02 48

456 Milwaukee

......

Advantages
• can get all data for one station

without scanning the whole cluster
(100s of machines)

• looking up dates in a range for a
station is fast (pre-sorted)

Challenges
• need to anticipate common queries
• carefully choose partion keys and cluster columns
• too many partitions: queries hit many nodes
• too few partitions: imbalance

primary key: (station_id, date)

Schema Example: Weather Data

rows

station_id date temp

non-repeating repeating

123 MadisonAP 2023-03-01 50

2023-03-02 52

2023-03-03 42

station_name

2023-03-01 55

2023-03-02 48

456 Milwaukee

......

TopHat

HBase

Cassandra Data Model

Demos
• Deployment
• cqlsh
• Python (cassandra-driver package)
• Spark (external data source)

Outline: HBase and Cassandra

