
[544] Cassandra Partitioning
Tyler Caraza-Harter

Learning Objectives

• identify strengths and weaknesses of different partitioning
techniques

• interpret a token ring to assign a row of data to a Cassandra
worker (assume single replication for now)

• describe how gossip can be used to replicate data across
workers in a cluster, without need for a centralized boss

Cassandra Influences

BigTable
(2006 paper)

HBase
(2008 release)

Cassandra
(2008 release)

Dynamo
(2007 paper)

DynamoDB
(2012 release)

data model,
storage layout

partitioning+replication

"customers should be able to view
and add items to their shopping

cart even if disks are failing, network
routes are flapping, or data centers
are being destroyed by tornados"

~ authors of first Dynamo paper
goal: highly available when things are failing

Partitioning Approaches

Given many machines and a partition of data, how do we decide
where it should live?

Mapping Data Structure
• locations = {"fileA-block0": [datanode1, ...], ...}
• HDFS NameNode uses this

Hash Partitioning
• partition = hash(key) % partition_count
• Spark shuffle uses this (for grouping, joining, etc); data structures

associate partitions with worker machines

Consistent Hashing
• Dynamo and Cassandra use this

Review: HDFS Partitioning

"ABCD" (F1.1)

"EFGH" (F2.1)
"IJKL" (F2.2)

DataNode
Computers

"ABCD" (F1.1)

"ABCD" (F1.1)

"EFGH" (F2.1)

"IJKL" (F2.2)

DN1 DN2 DN3

NameNode

F1.1: nodes 1, 2, 3

F2.1: nodes 1, 2
F2.2: nodes 2, 3

My Laptop

client program

block
locations

Review: Spark Hash Partitioning

X Y
A 1
A 3
A 7
A 8

B 2
B 9

X Y

A 1
A 3

X TOTAL
A 19

C 4
D 5
D 6

B 2
C 4

D 5
D 6
A 7

A 8
B 9

B 11

m
ac

hi
ne

 1
m

ac
hi

ne
 2

C 4
D 11

partition

X TOTAL
A 19
B 11
C 4
D 11

action

file or
Pandas DF

3 partitions

row = Row(X=D, Y=5)
partition = hash(row.X) % 3 # partition=2

Discuss Scalability: HDFS and Spark

Scalability: we can make efficient use of many machines for big data

Some ways we can have big data:
• few large objects (files/tables)
• lots of small objects (files/tables)

Will HDFS struggle with either kind of big data? Spark?

Elasticity: Easily Growing/Shrinking Clusters

Incremental Scalability: can we efficiently add more machines to an
already large cluster?

What happens when we add a new DataNode to an HDFS cluster?

What would need to happen if we able to add an RDD partition in
the middle of a Spark hash-partitioned shuffle?

Elasticity: Easily Growing/Shrinking Clusters

Incremental Scalability: can we efficiently add more machines to an
already large cluster?

What happens when we add a new DataNode to an HDFS cluster?

What would need to happen if we able to add an RDD partition in
the middle of a Spark hash-partitioned shuffle?

Demo: hash partition 26 letters over 4 "machines".
Add a 5th machine. How many letters must move?

Partitioning Approaches

Given many machines and a partition of data, how do we decide
where it should live?

Mapping Data Structure
• locations = {"fileA-block0": [datanode1, ...], ...}
• HDFS NameNode uses this

Hash Partitioning
• partition = hash(key) % partition_count
• Spark shuffle uses this (for grouping, joining, etc); data structures

associate partitions with worker machines

Consistent Hashing
• Dynamo and Cassandra uses this
• token = hash(key) # every token is in a range, indicating the worker
• locations = {range(0,10): "worker1", range(10,20): "worker2", ...}

Consistent Hashing

biggest
int64

smallest
int64

number line

Consistent Hashing

biggest
int64

smallest
int64

node1 node2 node3workers:

assign every worker a point on the number line.
Could be random (though newer approaches are more clever).

No hashing needed, yet!

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something

Consistent Hashing

biggest
int64

smallest
int64

node1 node2 node3workers:

assign every row a point on the number line.
token(row) = hash(row's partition key)

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something

A B C D Erows:

Consistent Hashing

node1 node2 node3workers:

each node's token is the
inclusive end of a range.
A row is mapped to a node
based on the range it is in.

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something

A B C D Erows:

node1 node2 node3

A B C D
cluster:

belongs to node2

Consistent Hashing

node1 node2 node3workers:

tokens > biggest node token are in the wrapping range. Rows
in this region go to the node with the smallest token.

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something

A B C D Erows:

node1 node2 node3

A B C D
cluster:

E

Alternate Visualization

Given the wrapping, clusters using consistent hashing are called
"token rings"

Common visuazilation (e.g., from Wikipedia)

https://en.wikipedia.org/wiki/Consistent_hashing#/media/File:Consistent_Hashing_Sample_Illustration.png

Adding a Node

node1 node2 node3workers:

which rows will have to move?
which nodes will be involved?

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something
token(node4) = pick something

A B C D Erows:

node1 node2 node3

A B C D
cluster:

E

node4

new
node4

Adding a Node

node1 node2 node3workers:

which rows will have to move? Only C
which nodes will be involved? Only node3 and node4

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something
token(node4) = pick something

A B C D Erows:

node1 node2 node3

A B CD
cluster:

E

node4

node4

Adding a Node

node1 node2 node3workers:

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something
token(node4) = pick something

A B C D Erows:

node4

Typically, what fraction of the data must move when we scale from N-1 to N?
Hash partinioning: about (N-1)/N of the data
Consistent hashing: about (size of new range)/(size of ring) of the data must
move.

Collisions Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something
token(node4) = pick something

Problem: latest Cassandra versions by default try to choose new node tokens
to split big ranges for better balance (instead of randomly picking). Adding
multiple nodes simultaneously can lead to collisions, preventing nodes from
joining.

Solution: add one at a time (after initial "seed" nodes)

node1 node2 node3workers:

A B C D Erows:

node4
node5

Sharing the Work

node1 node2 node3workers:

Token Map:
token(node1) = pick something
token(node2) = pick something
token(node3) = pick something
token(node4) = pick something

A B C D Erows:

node4

Other problems with adding node 4
• long term: only load of node 3 is alleviated
• short term: node 3 bears all the burden of transferring data to node 4

Solution: "vnodes"

Virtual Nodes (vnodes) Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

node1 node2 node3workers:

A B C D Erows:

node3 node2node1

Each node is resonsible for multiple ranges
• how many is configurable
• node 4 will take some load off nodes 1 and 2

(those to the right of its vnodes)

node4node4

Heterogeneity Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8, t9, t10}

node1 node2 node3workers:

A B C D Erows:

node3 node2node1

Heterogeneity: some machines (e.g., newer ones) have more resources
• more powerful nodes can have more vnodes
• probabalisticly, they'll do more work and store more data

node4node4node4 node4

Token Map Storage Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

where should this live?

we don't want a single point of failure
(like an HDFS NameNode)

Token Map Storage
node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data... every node has a copy of the token map

they should all get updated when new nodes join

Adding Nodes: Bad Approach
node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

node4

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

rebooting...

uh oh, node 3 won't know about
node 4 when it comes back

Better Approach: Gossip
node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node4

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

rebooting...

just inform one or a few nodes
about the new one

node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node4

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}

table rows
...lots of data...

rebooting...

once per second:
choose a random friend
gossip about new nodes

"have you heard
about node 4?"

Better Approach: Gossip

node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node4

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

eventually, every node should find outBetter Approach: Gossip

node1

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node2

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node4 (coordinator)

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

node3

Token Map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

table rows
...lots of data...

when a client wants to write a row,
they can contact any node -- it should
know where the data should live and

coordinate the operation

client

Better Approach: Gossip

TopHat, Worksheet

